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1. INTRODUCTION ^ •    ' 

The grid resolution in any mesoscale meteorological model is inadequate 

to resolve all the turbulent transport processes likely to be important in the 

troposphere. Accurate simulation of the physical mechanisms which are 

controlled by turbulence depend on how faithful the subgrid flux 

parameterization can represent those turbulent transport processes. In this 

report we use the A.R.A.P., second-order closure model of turbulent transport 

in the atmosphere as an aid in developing a practical subgrid flux 

parameterization scheme. The dynamic equations for the second-order flux 

quantities of interest are used to suggest practical approximations, and 

relatively high resolution simulation results from our existing one and 

two-dimensional models of the atmospheric boundary layer are used to test the 

accuracy of tentative schemes. 

Before developing a subgrid flux parameterization scheme it is desirable 

to get a clear concept of what motions the parameterization are to represent. 

The parameterization should represent the effect of the average of the 

ensemble of motions which are of too fine a scale to be resolved by the 

mesoscale model. These ensemble average considerations are discussed in 

Appendix A, a reprint of an AMS Workshop presentation in October, 1983. One 

needs to make a conscious choice of the scale which is to divide the fluid 

motions into a resolved mean motion and an unresolved turbulent motion. The 

unresolved ensemble scale, for most mesoscale models, will include all of the 

boundary layer scale eddies and most of the individual cloud motions. The 

most unique feature of our proposed subgrid flux parameterization is the 

attempt to incorporate cumulus parameterization as an integral part of the 

turbulent transport model. 



We recommend using a quasi-equilibrium approximation to our second-order 

closure transport model. This approximation combines a prognostic equation 

for the turbulent kinetic energy with diagnostic equations between local 

gradients of the mean quantities and the turbulent fluxes and integral surface 

layer relations. Again, the most attractive feature of this proposed scheme 

is the incorporation of cumulus parameterization as an integral part of the 

turbulent transport model. 

Results of six different tests of the proposed formulation are described. 

Further testing of the scheme is required, particularly for the cumulus 

parameterization, but these preliminary results should justify a continuation 

of this approach. •- 
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2, PROPOSED SCHEME 

As discussed in Appendix A, it is necessary to ensemble average over 

horizontal length scales which are at least 4 times the desired grid length. 

Thus, in any mesoscale model it will be necessary to ensemble average over 

length scales which are much bigger than the height of the planetary boundary 

layer. It follows that vertical gradients of the mean variables will be much 

larger than horizontal gradients so that a quasi 1-D parameterization of the 

subgrid turbulent fluxes is appropriate; i.e., although the variables are a 

function of time and all 3 space coordinates, the subgrid fluxes will be 

primarily driven by the vertical gradients. After reducing the problem to a 

quasi 1-D problem, it is still necessary to decide on the level of the 

turbulent closure to be used. Although full Reynolds stress closure may 

eventually prove desirable, a reasonable compromise between the desire to 

provide as much physics in the turbulent transport as possible without unduly 

increasing the numerical complexity, . is to use a quasi-equilibriura 

approximation for the turbulent flux equations. This approximation combines a 

prognostic equation for the turbulent kinetic energy with diagnostic relations 

between local gradients of the mean quantities and the turbulent fluxes. 

The equation for the turbulent kinetic energy may be modeled as 

(Lewellen, 1981) : 

DioiZii =-^ir7rii-7s7^9l.£^.v, -^ (^iM^\ . b^ 
Dt 32        9z  TQ   ^   •= 3z \   8z   /   A 

(2.1) 

The last 2 modeled terms representing diffusion by turbulent transport and 
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turbulent dissipation are not specified until the turbulent length scale A is 

specified. Again consistent with our desire to minimize increased complexity 

we choose the following, relatively simple algebraic specification: 

A - min (0.65 z, A», q/2N) (2.2) 

unless ,       "     • 

dA 
dz 

> 0.65, in which case 
dA 
dz 

0.65. (2.3) 

z is height above the surface, q^ - u^u^ is twice the turbulent kinetic 

energy, and N^ -[g/lA  dT/dz is the Brunt-Vaisala frequency if positive, 

otherwise this term is neglected in the minimization. A» is a measure of the 

scale of the turbulent region and is set equal to 0.22zi4, where Z4 is the 

height at which q^ becomes one quarter of the surface value, i.e., the outer 

edge of the boundary layer.  The constant 0.22 was chosen to obtain good 

agreement with experimental observations of 7^.      The second restriction on 

the slope of A is used to prevent A from decreasing too sharply in any 

inversion region, since it would be physically unrealistic for the lengthscale 

to change too abruptdy. .The scale may be determined by sweeping upward from 

the surface applying the minimum criterion until the slope bound is exceeded; 

then the scale is set using the scale at the point below, together with the 

slope criterion. This simple specification of A is probably one of the major 

limiting factors on our proposed parameterization, but any of the available 

more complicated formulations do not appear warranted for this level of 

approximation at the present time. 

The diagnostic relations for the vertical turbulent fluxes are obtained 

by assuming local equilibrium in all of the equations involving second order 

correlations except the horizontal velocity fluctuations.  This yields: 

Z^  = - qAS^ I '    . ^'-'^ 
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v'W - - qAS^ 1^ (2.5) 

         36 
we- --QASH- 

w'h- --qAS„| 

(2.6) 

(2.7) 

where S and Sj^ are the following stability dependent coefficients: 

 Llz2b)  (2.8) 
"  3[A + (2 + 1/bs)R] 

A. (1/bs- 1/A)R (2.9) 

where R - (gA^/q^T^ j 9T/3z, and A,b, and s are our standard model coefficients 

(0.75, 0.125, 1.8). 

Equations 2.8 and 2.9 are somewhat simpler than the expressions used in 

Mellor and Yamada's (1974) level 2-1/2 model because-we have assumed the 

vertical velocity variance equation.to be in local equilibrium while their 

relations assumed 1/3rd of the local q  imbalance in Equation 2.1 to be 

apportioned to the w'w' balance. Which is more physical is arguable since an 

imbalance under atmospheric boundary layer conditions appears more likely to 

persist in the horizontal velocity variance. Our principal reason for 

choosing local balance in w'w' to close the equations is because this leaves 

S^ and Sj^ independent of the local velocity gradient. 

This quasi-equilibrium parameterization of the subgrid-scale fluxes 

provides a robust formulation except under conditions which may lead to 

extreme values of R.  Under unstable conditions S^ has a singularity near 

R = -0.12.  Generally, we do not expect this limit to be reached since as S^ 

becomes large the heat flux production term in Equation 2.1 increases q^ and 

thus reduces R.  For added robustness, S^  is not allowed to exceed 2, in which 
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case S^ is also set equal to 2. This limit is set high enough it is rarely 

invoked, but low enough to not cause problems when it is. Also, R is not 

allowed to exceed 1, which gives a lower limit of 0.035 for S^; note that 

this is only a restriction in the region where the slope criterion governs the 

choice of A, since otherwise 

A < q/2N. i.e., A^ z^ |^ < q^/M (2.10) 
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3. SURFACE BOUNDARY CONDITION PARAMETERIZATION 

Appropriate surface boundary conditions for any numerical meteorological 

simulation depend critically on the vertical grid resolution next to the 

surface. We wish to provide a formulation of the surface transport 

coefficients which does not require the detailed resolution of a part of the 

surface layer flow. We would like our formulation to be completely compatible 

with the standard surface layer relationships but yet sufficiently robust that 

it can give approximately valid results when the minimal resolution is so 

coarse as to include the total boundary layer within the model layer adjacent 

to the surface. 

We choose to define the surface transport coefficients by: 

C 
u 

U'W'Q /qu^ (3.1) 

C  = - Vwjqv^ (3.2) 
•V 

CQ = - w'0'^/q(0i - 0^) (3.3) 

when the subscript o represents the surface value at ZQ and the subscript 1 

represents the average of the quantity between the surface and midway between 

the first two grid points.  We designate this height as z^. 

We choose to involve q, in the definitions of Equations 3.1~3.3. rather 

than use either u, ■or u» in the place of this characteristic velocity as is 

most often done.  This removes some of the variation from the transport 

3-1 



coefficients without adding complications since the surface value of q already 

is needed as a boundary condition on Equation 2.1. With this definition the 

coefficients are not forced to become very large as free convection conditions 

are approached. The boundary conditions are now completed by providing a 

specification for the surface transport coefficients and the turbulent 

velocity fluctuation q.  An expression for q^ is derived by integrating the 

turbulent kinetic energy equation between ZQ and z^. 

1/2 
3q[ J_ /• ^a  r _ ^JTTT 1^ 

2a>o   L        3^ 
- v'W IX + S. 

dz        T, 
w'e' 8A ] dz 

(3.4) 

For purposes of our surface parameterization we will ignore the LHS of 

Equation 3.M since the time scale of the turbulence in the surface layer 

should be short in comparison to the time scale of the mesoscale model 

simulation. The turbulent scale A appearing in the last term can be taken as 

proportional to z, i.e. 'az, up to some height which depends on either 

stability or the boundary layer thickness. A reasonable representation of 

Equation 3.4 then should be to take 

^? Cf^U? . c^^., v,2 .^C. 
T^  ^ MJ^a 

/ 
8l(^a' ^0- ^s (3.5) 

where 

in 7.       <    7. ^a - ^3 

.3    1  / In — + — z - z 
^0  ^s ^ ^  ' 

^a > ^3 
(3.6) 

and z is a height based on the maximum value of A which is yet to be defined. 

After some experimentation with this expression we found it desirable also to 

limit the heat flux term to damp out no more than 20? of the shear flow term 

under stable conditions.  This corresponds to imposing an upper bound on the 
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flux Richardson number. 

Approximations for the transport coefficients may be obtained from 

integrals of the Reynolds stress and heat flux equations between ZQ and z^. 

We begin with the Reynolds stress equations as modeled by our second-order 

closure approach(Lewellen, 1981) and integrate them between ZQ and z^. Under 

neutral, homogeneous, quasi-steady conditions, these equations may be written 

as: 

/S. u'w' dz = - / w'w' -— dz 
3z 

:3.7) 

/-' 
v'w' dz / w'w' — J 3z dz (3.8) 

/^ w'e' dz - - /- w'w' — dz 
A y 3      3z (3.9) 

When A is assumed'equal to az, q and w'w' are taken as constant, and u'w', 

'w', and 0'w' are taken as linear, these equations reduce to 

w'w' 
'u' u'w 

qui H-) (3.10) 

w'w'  a 
a   — + 

V'w' 

QVi ('■ i -') (3.11 

S = 
4w'w' 

3q' 

V!o 
Qi-Qo 

0'w' 

q {Q^Q, 
In 

) 

(3.12) 
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When the turbulent fluxes at z^ are specified by the subgrid flux 

parameterization between points 1 and 2,   the mean value of u,v, and 0 are 
  2 

averaged between their respective values at points 1 and 2, and w'w'/q  is 

approximated  as  equal to 1/M;  Equations 3.10-3.12 provide approximate 

expressions for the determination of the surface transport coefficients 

defined in Equations 3-l~3.3. 

If Zg falls within the surface layer where u'w'^ - u'w'^, 

etc., these last 3 equations reduce to. 

u - In z/Zo, 

(0.16; In -1 (3.13) 

(0 •22)/fln -1 (3.U) 

2 . Where we have given a w'w'/q its neutral value of 0.16 

There are 3 types of modifications which must be considered for Equations 

3.13 and 3.14. There are the stability modifications which can be made within 

the framework of the constant flux surface layer. _ There are the effects of 

pressure gradients and heat sinks which force the turbulent transport fluxes 

to depart from their surface values. Finally, there are modifications 

required when z, extends above the height to which the turbulent scale can be 

taken as proportional to z.  Let us consider stability modifications first. 

The surface layer relationships are familiarly given in terms of z/L. 

i.e., for stable conditions 

U - — 
k 

In Z/ZQ  + 4.7 z/L (3.15) 

®1 - % k 
0.74 In z/z^ + 4.7 z/L (3.I0; 
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Equations 3.15 and 3-16 may be integrated and inverted to give expressions for 

the transport coefficients as a function of z^/L. In order to improve the 

robustness of the formulation we choose to approximate the stability factor in 

terms of the layer bulk Richardson number. 

Rir (3.17; 

When Equations 3-15 and 3.16 are integrated and order z^/z^ neglected it is 

possible to write 

-B -H-H^l/i'^] (3.18) 

with 

!i /.„!i-ir' (3.1,9) 

An approximation for the stable modification which agrees very well with 

the standard surface layer relation is 

V'^N 
M,7  z. 

1   + 

2L  In^ -1 

-1 1   -  ^-7  RIB/S 

1+4.7  RIB/^ 
(3.20) 

The 2 expressions for Cf/C^ in Equation 3.20 are compared in Figure 3.1-  The 

two forms are almost indistinguishable.  The compatible expressions for Cg are 

-e/^Gfj 

M.7 z. 
1 + 

I0.7M) 2L(ln 1 
^0 

-1 
1 - i4.7 RiB/2 

1 + 1.83 Ri 
(3.21 

B 

These are compared in Figure 3.2.  We expect the Rig formulation to be 
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0 I I t ■«'■■'■'«'■■'»'■■''■''■''** *   « 1 I 

.05   .10   .15   .20   .25   .30 
Ri B 

,35   .40    .45 

FIGURE 3.1:  COMPARISON OF THE TWO EXPRESSIONS FOR C^/C^ IN EQUATION 3.20 AS A 
n 

FUNCTION OF BULK RICHARDSON NUMBER. 
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FIGURE 3.2: COMPARISON OF THE TWO EXPRESSIONS FOR Cp,/Cp, IN EQUATION 3.21 AS A 

FUNCTION OF BULK RICHARDSON NUMBER. \ . 
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approximately valid even when a coarse grid is used and the model surface 

layer extends well beyond the actual surface layer. However, in this case, Za 

can no longer be determined solely by the grid but also must be a function of 

the boundary layer thickness which will impose an upper bound on Rig to 

prevent Equations 3.20 and 3-21 from becoming negative. This will be 

discussed later. 

For' unstable flow we propose to use essentially the same formulation. We 

do not anticipate appreciable negative values of Rie t>«ing maintained for 

significant times since the strong Instability should generate increased 

turbulence which tends to wipe out the unstable gradients. This change in 

transport is already accounted for by the presence of q in Equations 3-1 and 

3.2. For robustness, we will not let -Ri^ exceed 1A which is about as far as 

the linear form of Equation 3-17 should be expected to hold, and to add qS 

twice the turbulent kinetic energy, to the denominator of Equation 3-17 so 

that it remains limited even under free convection conditions. The specific 

limit of free convection is considered in Appendix B. 

Let us now look at the effects of pressure gradients and heat sinks which 

force the turbulent transport fluxes to depart from their surface values. 

This extension of the neutral surface layer relations beyond the region of 

constant flux follows , the analysis given by Lewellen (1977). At the surface 

where the advective terms are zero the mean momentum and mean energy equations 

may be approximated as        ;, 

3 u'w'  -  F. (3-22) 
3z 1 

3 e'^'  - Q (3.23) 
3z 

where F. is the pressure gradient vector and Q represents any distribution of 

heat sources (or sinks). When Equations 3-22 and 3-23 are integrated fro- ZQ 

to z they allow the turbulent fluxes at z^ to be related to those at the 



surface.  Thus 

7s7^ - - Cf^qvi  - Fyfz^-z^)     ^ (3.25) 

is;^ » - Ceq(0i - e^) * Q(Z3 - 2^) ' ■ (3.26) 

These last 3 equations can be used in Equations 3.10-3.12 to obtain the 

influence of F and Q on the surface transfer coefficients.  We use these 

expressions to find approximate expressions for C^    and Cg , namely 

C^   - (   ^-l^]        /        / in^ -1^     ' (3.27) 

r        .    (^-    //^-   \/L    !i -1^    . (3.28) 
®N    I 3   qG3- 0,  / [         z^ 

Equations 3.27 and 3.28 are appropriate as long as z^ is less than the 

height at which the pressure gradient term balances the surface shear stress. 

If these balance heights are defined as z», then they are given from Equations 

3.24 to 3.26 as: _      . •    .  . 

^u •     I'^f^'^^l   /    Pix^l ^3.29) 

<• 1^-1 /i^i \-''-''' 

ZQ   -        Ic.q f 6, - eo)/Qol 
(3.31 
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Now we are ready to face the problem of extrapolating the formulations to 

the outer regions of the boundary layer where A no longer increases with z and 

where the turbulence can not be assumed equal to its surface value. These two 

effects tend to partially cancel each other. In order to account for these 

effects in any definitive way it would be necessary to estimate the thickness 

of the boundary layer. We have experimented with integrals of the mean 

momentum equations, the temperature equation and the turbulent kinetic energy 

to provide estimates of the boundary layer thickness when the vertical 

resolution of the model is too coarse to provide a valid estimate. This 

formulation is presented in Equations 3-35 to 3.51, but the tests results to 

be presented in the next section suggests that a fairly consistent formulation 

is possible without adding the complexity of prognostic equations for these 

boundary layer thicknesses. This simpler formulation is obtained by limiting 

|RiJ  ^ 0.2 ,, (3.32) 

and under stable conditions to set 

0.2 ui^-,^)y S-   fe, - ej (3.33) 
T. 

For purposes of estimating Zg in Equation 3-6, the maximum A may be estimated 

by setting the stable boundary layer thickness as equal to 5L 

(Deardorff,   1972),   and Aj^^^^ - 0.2L (Lewellen &.Teske,   1973). ■ This yields 

^s 0.012    u^2  * v/ Wf-    [B,   -  e,j (3.34) 

Equations 3.20 and 3.21 are extrapolated beyond the surface layer by 

restricting the numerator to be limited as if Rig ^ 0.2, but not limiting Rig 

in the denominator. On the unstable side Rig is everywhere limited to 

< 0.2. 
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The effect of the pressure gradient is extended by replacing the surface 

pressure gradient with f (vg - v^) and f (u^ - Ug] in Cf^ and C^^ respectively. 

We have not attempted to include surface layer radiation. For robustness we 

have also included the restriction that the angle of the surface shear stress 

can not depart from arctan Vi / u^ by more than 45°. 

This completes the formulation required for the tests in the next 

section. 

On the unstable side the tests provided in the next section generally 

have sufficient grid points to provide a rough estimate of 6. If the 

formulation is to be used with a much coarser resolution then even the 

unstable layer is likely to appear as a stable layer. For this coarser grid 

resolution it would be desirable to include an integral equation for 5. A 

number of prognostic equations for 6 have been published e.g., 

Deardorff. 1972, Randall, 1979. A consistent formulation of 5 may be derived 

from integrals of the mean momentum, temperature, and turbulent kinetic energy 

equations. The momentum and temperature equations may be written in the 

following defect form / - '   ■ 

_i(,^_,)._l   — -f(v-V^)*^    U/ (3.35) 

,     T!(V. -V)=^    — W(U-Ug)^-|    V„ (3.36) 3^ r-    ''    3z \       sj    at 

-i /G   - G) = -^^F¥ - 4   - — e„ (3.37) 
/     ^7. at   " at V °       ^     3z 3t 

where by definition the subscript » represents the value of the quantity in 

the inviscid region above the boundary layer, fVg and fUg represent the two 

components of the pressure gradient, and ^ is any thermal energy source term. 

We can replace V  and U  in Equations 3-35 and 3-36 with V„ and U„, after 
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noting that -  " 

and        •        ''■   ' 

after integrating across the boundary layer Equations 3.35-3.37 may be written 

as: 

where 

and 

rf (U.6u) - Ui rfU,6^ (3.40) at 

^ (U.6^) = V2 - fU.6^,      _ ; ^,^     (3.41) 

^ (6^6Q) - e»U,  * SQ      •       ^  (3.42) , 

6u - r^ 1  (U„ - U) dz (3.43) 

«v 

"-jo ^ 

-1 P (v„ - V) d2      -' (3.44) 
"Jo 

a' '■ 6Q - j- /"^  fe„ - e) dz •. , (3.45) 

Se P ( i„ - Q) dz (3.46) 

0^ » G„ - 0Q =  r5 + A Gg (3.47) 
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The turbulent kinetic energy may be written as: 

^ dz 
2 K [" "'"' 

3u 
3z 

v'W 3v 
3z 8A 

dz 

(S.MS) 

When we define 

- r q'' dz (S-i^g) 

and assume the turbulent fluxes vary linearly across the boundary layer 

Equation 3.48 can be rewritten as:     ' 

-i q26 
3t 

U„U2(1--H ^2 IX * _S + yji - u„v^ — + r^ e'w'„ - - z 
6  T, o 2 

(3.50) 

A reasonable form for the dissipation appears to be 

'/. 

5 n3 

" 8 '-0 ' 
dz i! -In — + B + ARic 

a   ZQ 
(3.51) 

where A and B are constants to be obtained by fitting high resolution runs. 

• During high resolution runs none of these last equations 3.^0-3.51 should 

be required but for the general case we need to carry these prognostic 

equations for 6^, 6y, 6g, and q^ and provide a consistent algorithm for 

determining <5. 
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We would like 6 to be a valid measure of the height to which the 

turbulence in the boundary layer extends. Under neutral conditions this can 

be provided by a simple proportionality constant, i.e., 

C^[6l^   62V/2. (3.52) 

However, when strong thermal gradients are present the spread of the 

turbulence is more likely to be controlled by the thermal thickness than it is 

by the velocity displacement thickness. A practical scheme for accomplishing 

this transition will require some numerical experimentation. The unstable 

transition is the best understood. The inversion at the top of the boundary 

layer takes over the governing role, with the rate of entrainment across this 

inversion determining the growth rate for 6. Under these conditions, when 9 

is nearly uniform across the boundary layer. Equation 3.^5 reduces to 

6, = I —^^^5  .   .  '  ■    •    (3.53) 
9   V e. - e^ 

with AG-  equal to the temperature change across the inversion.  This 

temperature jump may be specified or may be estimated by setting the Ri across 

the inversion equal to a critical value and assuming its thickness to be a set 

fraction of the boundary layer thickness. 

If   '       .     .  . 

Hi .-K (— '''  '''  '  \ (3.5.) 
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is fixed, then 

AGj_ = Ri i[(". V_ - V„ 
To JO (3.55] 

To begin with it is safer to specify A0j_, but Equation 3-55 should provide a 

reasonable rough estimate with Ri^/Y - 1.2. With A0^ fixed Equation 3-53 can 

be used to eliminate 6Q and the temperature equation, Equation 3-^^2, becomes a 

prognostic equation for 6. A number of formulations of this equation under 

these conditions have been given in the literature. 

The thermal control of the boundary layer under stable conditions is more 

subtle. Under stable conditions we expect the velocity gradient and the 

temperature gradient to be constant over the majority of the boundary layer 

between the surface and the top of the boundary layer. The essential 

dynamical control should be obtained by limiting the Ri based on these 

■ gradients to a critical value., . •   . - 

Ri. 
2To 

e. ^0^' (3.56) 

This .yields 

6 < 
2 Ri^fcritlU^ 

g/To/ 0 

1/2 

[ ^2 + x2 
*u * "^v 

T/2 
•C3.57) 

Under stable conditions we expect the turbulent scale to be limited by the 

ratio of the turbulent energy to Brunt-Vaisala frequency, i.e. 

A < q/N = q 6 f (0» - Qo) «0 
■1/2 

(3.58) 
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In this case Rig can be computed from Equation 3-18 with 

X - a [f e» - SQ «0 
1/2 

(3.59; 

,,i„--, 

Thus 6 is computed as the minimum of Equation 3.52 .or Equation 3-57 and Rig is 

the minimum of Equation 3.17 with 6 replacing z^ or Equation 3-18 with 

Equation 3.59. 

In summary,  the surface boundary conditions to be used with the 

quasi-equilibrium formulation of section II in the tests to be discussed in 

Section V are: '    *" 

1 

" ^ -1 o 

0.16 
V  - V 
_g 1 

qu. («'.) 
(3.60) 

'"^r-'l 
0.16 +  ^ g 

^1  ^a 
qv^ f^l (Rib) (3.61) 

0.22 

'.„ ^ -; 
Z„ I 

h    Rib 
(3.62) 

^T  - min ( Z3, Z3) (3.63) 

^^   (Rib) max 
1 - 2.35 Ri, 0.5 
1 + 0.78 Ri^  '  1 + 0.78 Rit, 

(3.6U) 
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("t.) max 
1   - 2.35 Ri. 0.5 
1   + 1.83  Rit)    '      1   ♦ 1-83  Rib 

(3.65) 

with 

Ri^    -    'ninj^ .[, (^1-^c) 

"l^ * ^1 
2  .  .2 

.   10 but i - 0.21 (3.66) 

z„    -    mm 
0.012   (u, ^ + v^^ + q^ 

;  0.3^6 
(3.67) 

The system is closed by 

2 q*- - max r 5.2     ( Cf.^ ui^ * Cf.^ v^2 - :j:^ eg ( e,  - 62) z^) ;       (3.68) 

81   -  1"  Z3/ZQ 

^a'  ^o'  ^s 

z     <  z ^a -  ^s 

(3.69) 

(3.70) 

z        z 

2o       ^s 
^a ^ ^s (3.71) 

unless a separate equation is required for  6. 
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4. RESULTS FOR SOME TEST PROBLEMS 

The best test of any sub-grid flux parameterization is in how well it 

allows the -model within which it is used to agree with real world data. 

However, it is tough to carry out conclusive tests of this type for two 

reasons. First, it is difficult to separate out the effects of the flux 

parameterization from the effects of the remaining model characteristics and 

second, it is seldom possible to find sufficiently complete data that all the 

uncertainty involved in input conditions can be removed. We have chosen an 

easier type of test, which involves comparing the results of coarse grid, 

highly parameterized simulations, with high resolution, less parameterized 

simulations. 

We use the results of high resolution simulations using our full 

second-order closure model of turbulent transport as a standard, and wish to 

show the extent to which our low resolution parameterized model proposed in 

Sections 2 and 3 will agree with these high resolution results.. 

All the results presented in this section come from 1-D simulations where 

only vertical gradients are considered. These are appropriate tests for 

sub-grid parameterization for a model like NORAPS where the horizontal grid 

resolution is likely to be approximately 100km. However, to support the 

results of our 1-D, high resolution, full second-order closure model we have 

also conducted some tests using a 2-D version of our full model. The 

advantage of the 2-D simulations is that they are made under conditions when 

we expect much of the turbulent transport to be carried by relatively large 

2-D eddies, which can be resolved by the grid system used. Thus, the results 

show little sensitivity to the closure assumptions.  These 2-D, large eddy 
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simulations then provide direct tests of the sub-grid, flux parameterization 

used in the high resolution simulations. The results presented in Appendix C 

show that the 1-D, high resolution results are quite close to the 2-D, LES 

results, even under the unstable conditions where simple, second-order closa'^e 

results have been reported to fail to provide satisfactory entrainment results 

(Zeman and Lumley, 1976), Wyngaard, 1981). These 2-D results are somewhat of 

a digression from our main task of providing sub-grid parameterization 

appropriate for a mesoscale model, but we felt it was necessary to provide 

clear support for the accuracy of the 1-D full closure equations before using 

these results as a standard for our parameterization tests. 

We have chosen 3 quite different meteorological regimes to test our 

proposed parameterization. The first is the unstable, relatively well mixed 

planetary boundary layer under conditions quite similar to those used in the 

2-D simulations of Appendix C. The second regime is that where a constant 

cooling rate is applied which allows the PBL to approach an equilibrium stable 

layer. The third test is where we allow the surface heat flux to transition 

from unstable to stable and back to unstable on a cycle which simulates a 

typical diurnal variation. The full closure model was run with a sufficiently 

fine grid to make the solution independent of the grid. The Q.E. model was 

run with M different grid resolutions as given in Table 1. 

Comparisons between the Q.E. results and the full closure results for 

these  three  tests are given in Figures 4.1  to 4.17.  When the great 

simplification in the model is considered, the Q.E.  results appear quite 

acceptable. 

Results for an unstable PBL growing into a stable region similar to 

conditions of Appendix C are given in Figures 4.1 to 4.2. The Q.E. result 

shows a negative temperature gradient across the middle of the boundary layer 

which is not present in the results of the f-iUl closure model. This gradient 

is required to maintain the positive heat flux across the bulk of the layer. 

The diffusion terms in the full closure model allow the heat flow with little 

or no gradient across much of the layer. In spite of this difference the 

results are reasonably close.  Results for the free convection simulation of 
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Figures. 4.U and 4.5 are quite similar. 

Results for the constant cooling rate case are shown In Figures M.3 

to ^.7. A nominal neutral PBL with Ug - 10 m/sec, ZQ = 0.01 m, f - 10 sec 

is simulated for 12 hours and then a surface cooling rate of 1.8 °C/hour is 

applied. The near surface Az for each of these is indicated on the figure. 

Figure 4.3 shows that the Q.E. model tracks the surface friction velocity 

very well for all of the grids tested. The surface heat flux comparison does 

not show quite as much agreement. The larger the grid size, the more 

disagreement over the first 3 hours. However, this improvement with grid 

resolution is not consistent in the asymptotic, late/time results. 

The vertical profile of u, v, and T are given in Figures 4.5 and 4.6 at 

one particular time 6 hours after the cooling began. Even the coarse grid 

Q.E. results are quite reasonable. The maximum turbulent velocity is shown 

in Figure 4.7. The full closure result is significantly higher than the Q.E. 

results principally because the maximum q is occurring at the surface and the 

Q.E. models use a turbulent velocity averaged over a significant fraction of 

the boundary layer. 

Results for the diurnal day variation are shown in Figures 4.8 to 4.17. 

The largest discrepancies occur in the morning transition when there is a thin 

unstable layer eroding the surface inversion which has built up over the 

night. This causes a big difference between the course resolution and fine 

resolution Q.E.  results over approximately 5 hours. 

Other comparisons are shown in Section V and in Appendices C and D. 
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TABLE 1 

Computational Grids - Q.E.  Model 
Constant Cooling - Uniform grid spacing 

Grid Az No. Points Zd) 

A 140 7 70 

6 100 10 50 

c 70 14 35 

D 30 31 15 

Diurnal Day and Unstable Boundary Layer 

Uniform grid spacing 

Grid Az No. Points zd) 

C 140 7 70 

Nonuniform grid spacing 

Grid Azd) ■ No. Points . Zd) 

A 

B 

140 

60 

31 

39 

70 

30 

770 1     1130 2000 
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Unstable Boundary Layer 
1000 

BOO 

600 

■c 

J    400 

 1 \  

Q.E.   Model 

Full Closurt Model 

200 

FIGURE 4.1 

4 6 i 
Potential Temperature 

COMPARISON OF THE POTENTIAL TEMPERATURE DISTRIBUTION AS PREDICTED 
BY THE Q.E. MODELS OF TABLE 1 WITH THAT PREDICTED BY THE FULL 
CLOSURE MODEL FOR A QUASI-STEADY UNSTABLE FLOW. 
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FIGURE 4.2: COMPARISON OF THE HEAT FLUX DISTRIBUTIONS WHICH GO WITH THE 
POTENTIAL TEMPERATURE DISTRIBUTIONS OF FIGURE 4.1 
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FIGURE 4.3:     FRICTION VELOCITY AS A FUNCTION OF TIME AFTER A CONSTANT COOLING 
RATE OF 1.8°c/H0UR  IS APPLIED TO THE SURFACE. 
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FIGURE 4.4: SURFACE HEAT FLUX AS A FUNCTION OF TIME AFTER A CONSTANT COOLING 
RATE OF 1.8=c/H0UR IS APPLIED TO THE SURFACE. 
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Constant Cooling Rate 
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FIGURE 4 5- MAXIMUM TURBULENT VELOCITY FLUCTUATIONS AS A FUNCTION OF TIME  . 
AFTER A CONSTANT COOLING RATE OF 1 .8°c/H0UR IS APPLIED TO THE 
SURFACE. 
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FIGURE 4.5: VELOCITY DISTRIBUTIONS OBTAINED 5 HOURS AFTER THE APPLICATION OF 
THE CONSTANT COOLING RATE. 
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Constant Cooling Rate :   TJ/ne = 18 Hours 
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FIGURE 4.7: TEMPERATURE DISTRIBUTION OBTAINED 6 HOURS AFTER THE APPLICATION 
OF THE CONSTANT COOLING RATE. 
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FIGURE 4.8:    DIURNAL VARIATION OF THE SURFACE  FRICTION VELOCITY. 
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FIGURE 4.9:     DIURNAL VARIATION OF THE SURFACE TEMPERATURE, 
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FIGURE 4.10: DIURNAL VARIATION OF THE MAXIMUM TURBULENT VELOCITY VARIATION, 
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FIGURE 4.11:     DIURNAL VARIATION OF THE MAXIMUM TURBULENT  LENGTH SCALE, 
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Diurnal Day Variation : Time = 40 Hours 
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FIGURE 4.12: WIND VELOCITY DISTRIBUTIONS DURING THE MORNING TRANSITION. 
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Diurnal Day Variation :   Time = 40 Hours 
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FIGURE 4.13:     POTENTIAL TEMPERATURE  DISTRIBUTION DURING THE MORNING TRANSITION, 
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FIGURE 4.14: WIND VELOCITY DISTRIBUTIONS DURING AFTERNOON UNSTABLE CONDITIONS. 
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Diurnal  Day Variation :   Time = 44 Hours 
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FIGURE 4.15: POTENTIAL TEMPERATURE DISTRIBUTION DURING AFTERNOON UNSTABLE 
CONDITIONS. 
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Diurnal Day Variation :   Time = 52 Hours 
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FIGURE 4.15: WIND VELOCITY DISTRIBUTIONS SHORTLY AFTER TRANSITION TO NOCTURNAL 
CONDITIONS. 
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FIGURE 4.17: POTENTIAL TEMPERATURE DISTRIBUTIONS SHORTLY AFTER TRANSITION 
TO NOCTURNAL CONDITIONS. 
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5.  INCORPORATION OF CUMULUS PARAMETERIZATION 
INTO THE TURBULENT FLUX RELATIONS 

A large part of turbulent transport in the atmosphere involves cloud 

dynamics. Therefore, before any subgrid flux parameterization can have any 

general applicability for a mesoscale model it must represent these dynamics, 

at least, in some approximately valid manner. The cumulus analysis of 

Lewellen, Sykes and Oliver (1983) provides the basis for extending the 

parameterization of section 2 to include cumulus transport. As long as the 

turbulent kinetic energy equation, Equation 2.1, is written in terms of the 

virtual potential temperature, it remains unchanged in the presence of change 

of phase of the water in the atmosphere.  The strong- influence of the change 

of phase comes in the equations for 6^ and w'e^.  In the absence of any 

radiation flux divergence it is 

Qv - sr/lo ^^2 ^^-^^ 

which is the conserved buoyancy quantity as shown in Equation 5.12 of L.S.O. 

De„   awe^   awe; 

~Dt °   3z      3z 
+ Br r'w' (5.2; 

If we assume that the vertical flux of 6^ needed for the T.K.E. equation may 

be given by a quasi-equilibrium version of Equation 5.9 of L.S.O. then it can 

be written as: 

w'9'y = - qhS^   {  —77 - Brr ) (5.3; 
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with 

„ .        1/3 .  ,' ■ , "^     ■ (5.M) 
^ 1   + 8.6  R 

o         ■       .  .lL.!S      ■ '■            .        (5.5) 

Expressions for r and r'W   may be obtained from Equations 5.26 and 5.29 

F          -  1/2    [l   + Erf(Q/^)"| (5.6) 

- (op/o^)  (a ^T^IT^ -  b we;) '            (5.7) 

with 

w'r' 

-    4=exp(-Qy2) . (5.8) 

S 

L/R^T 

(5.9) 

0^2 . a2  h'2    - 2ab-^    *    b^   e^^ (5.10) 

a - 1   -   [- 0.61   + (u"^   + O.61) Fj    6T hg (5.11) 

b -   [1   *(^-^-l)    7]   6TV^, ,. ,        (5.12) 

1   .^    h362 , (5.13) 

(5.U) 
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            2 
The expressions for w'h', h'h', h'e', and 6'  analogous to Equation 5.3 are: 

Wh' - - qhS^ 
_3h 

82 
(5.15) 

1-2 - !H .2 
V. bs 3z 

- err (5.16) 

   S    / - N 2 
h.2.!H^2 /|h 

bs   \ 32 
(5.17) 

e^n- 
bs Uz / \  32 

err (5.18) 

Thus 

bs 
Sh 

32 
- 2ab err + b' 

32 
- err 

(5.19) 

This set of equations provides a complete set of relations for two-phase 

turbulent flow. However, the character of the turbulence is likely to be 

quite different under conditionally unstable conditions then it is under 

either fully stable or unstable conditions. Equation 5.3 shows a given 

virtual potential temperature gradient may be stable in the absence of cloud 

and unstable in the presence of the cloud. Further, Equations 5.6, 5.9 and 

5.10 show that r will be larger in the presence of strong turbulence. Thus, 

there is a natural feedback which will drive the flow to divide between 

regions of high turbulence and regions of little or no turbulence. It is 

necessary to makp some adjustments in our transport modeling to account for 

this intermittency. We define intermittency, w , as the volume fraction of 

the sub-grid ensemble space occupied by the turbulent regions. We argue in 

LSO that the principle effect this has on our transport modeling is to 

increase the characteristic velocity q in the modeled terms by oj  so that 
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they are based on the average turbulent velocity in the turbulent region 

rather than the average over the layer ensemble space. We must determine how 

this should affect Equations 5.2 to 5.18 and how this new variable oj should be 

determined. 

Let us address the determination of u first. Rather than attempt to 

generate an equation from either a conditional moment approach or probability 

distribution function approach (Kollman, 1984), we will tentatively rely on a 

simple time scale relationship to determine intermittency. Under stable 

conditions, it has been established both theoretically and observationally 

that the scale of 3-D turbulence should not exceed q/2N. Theoretically, this 

limit is based on the energy required for an eddy to turn over in the presence 

of stable stratification. Observationally, it agrees with the limits 

necessarily imposed on the scale to obtain agreement with the Monin-Obukhov 

similarity functions in the stable surface layer (Lewellen, 1981). If the 

turbulence is instead permitted to be intermittent then the scale can exceed 

the limit of q/2N. Thus, in regions where the scale is observed to exceed 

q/2N we can expect the intermittency to be proportional to q/NA, i.e. 

(i) - Kq/NA (5.20) 

Thus, a consistent determination of A will through Equation 5.20 also provide 

a determination of u. For purposes of preliminary tests we will stick with 

essentially the same A algorithms as given in 2.2 and 2.3 except the stability 

limit on A is applied with JI based on the moist lapse rate, 36^/32 - BT. 

Thus, A will be equal to A» in the central region of the boundary layer and 

determined by [dA/dz] - 0.65 at both the top and the bottom of the boundary 

layer. In the regions where q/25I would have yielded a smaller A the flow is 

intermittent as given by Equation 5.20. The biggest weakness of this approach 

to intermittency is that it builds on the ad-hoc nature of A. However, this 

is not as damaging as it might first appear since the combination uiA appears 

together in all the modeled terms except the diffusion term where the relevant 

combination is A/u. Since there is theoretical justification for taking uA as 

proportional to q/N in the stable regions in which we are interested most of 

the uncertainty is tied to the diffusion terms.  Of course, since the net 
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effect of  intermittency is to increase the   effect   of   the   diffusion   terms   it 

does make the modeling of this term more important. 

With an algorithm for determining u at   our   disposal   we   can   address   how 

the    quasi-equilibrium   expressions   should   be affected by di.     By following the 

rule that  q in the modeled terms should be increased by u    ,  the 

quasi-equilibrium expressions may be written as 

D(q^/2) 
Dt 

u'w' 3u 
3z 

-       V'W' 
3z       T 

we; + ^-1    qA^^ 
u  3z \ 3z 

bq^ 
OJA 

(5.21) 

u'w' (5.22) 

V'W' -  a)qASj^ -^ (5.23) 

w'e'y  -  -  ujqASj^    I — -  Brr 
36, 

(5.211) 

w'h'   -  -  cjqAS^ — (5.25) 

1/3 
H      1   + 8.6R •     ^m ' ^H C°-''5  * 3.1R]/[I   + 1.33R] (5.26! 

R  = min M. 
ToQ' 

3z 
-Brr       ,   0.25 (5.27: 

(i) « min 
2A L^o 

39 
V 

3z 
-  Brr 

-1/21 

:5.23; 
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It is also desirable to adjust the cloud functions to account for the 

nonguassian distribution of the humidity and temperature fluctuations. 

Bougeault. 1981 has shown that skewness has a large influence on the r and a^ 

functions, particularly for Q< - 1. We can roughly compensate for this by 

allowing the guassian expressions given in Equation 5.6-5.10 to apply only in 

the turbulent part of the ensemble volume. The expressions then become: 

2 
(Q/V-2)] 1 * Erf (Q/V^) ^5.29) 

0^.-^ exp(-Q2/2) (5.30) 

Q..(h-h3)/o,     ., (5.31) 

with 0, given by Equation 5.19.        . .    ; 

If we wish the parameterization to include precipitating cumulus, it will 

also be necessary to add a term to the '^TTJ expression which represents this. 

We would expect this to be accomplished by combining a sedimentation rate 

which is a function of droplet size Gunn and Kinzer (191^9) with a 

Marshall-Palmer droplet radius distribution "as a function of liquid water 

content. The liquid water content can be obtained following the same analysis 

as led to ?, Op, and O;^. This is a refinement which can be added after it is 

demonstrated that the basic non-precipitating parameterization is valid. 

As a test of our algorithm for determining intermittency, we have 

recomputed the convective boundary layer of Section M using 

Equations 5.20-5.27. Without including humidity we can compare with the 

intermittency observations of Deardorff. Willis and Stockton (1980) in the 

capping stable layer. The potential temperature profiles of Fxgure5.1 and 

the heat flux profiles of Figure 5.2 are modified very little from those 

presented earlier for the Q.E. result of Section U. The intermittency 

results in Figure 5.3 are in quite reasonable agreement with Deardorff, 

et.al.'s  Observation  points  for  K-l   in  Equation 5.20.   Although 
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FIGURE 5.1:  COMPARISON OF THE TEMPERATURE DISTRIBUTION PREDICTED FOR FREE 
CONVECTION BY THE INTERMITTENT MODEL WITH THAT FOR THE STANDARD 
Q. E. MODEL. 
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FIGURE 5.2:  COMPARISONS OF THE HEAT FLUX DISTRIBUTIONS WHICH GO WITH THE 
TEMPERATURE DISTRIBUTIONS OF FIGURE 5.1. 
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Free   Convection 

Zeta 

FIGURE 5.3: MODEL PREDICTIONS OF THE INTERMITTENCY WITHIN THE INTERFACIAL LAYER 
AT THE TOP OF A FREE CONVECTION LAYER AS COMPARED WITH THE DATA 
OF DEARDORFF, ET.AL (1980). ZETA IS THE DISTANCE FROM THE HEIGHT 
AT WHICH THE HEAT FLUX GOES TO ZERO NORMALIZED BY THE INTERFACIAL 
THICKNESS. 
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intermittency does not play a strong dynamical role in this flow, we take it 

as a very encouraging sign that our intermittency algorithm is compatible with 

the observations. 

In checking this model for the conditions presented in LSO, it appears 

that neglecting terms like w'w'r' in the w'e^ equation may not be acceptable, 

although this would seem appropriate for a quasi-equilibrium approximation. 

This type term can be included in a straightforward fashion if we accept the 

model proposed in Equation 5.MM of LSO. In this case it is only necessary to 

replace r in Equations 5.2M, 5.27 & 5.28 with 

r + apOj,/u 

An appropriate value of a^,, will need to be determined by numerical 

experimentation. A value of unity leads to qualitative consistency for the 

example considered in LSO. 
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6. CONCLUDING REMARKS 

We have presented recommendations for a subgrid flux parameterization 

scheme appropriate for mesoscale meteorological models. Initial tests of this 

scheme, as compared with results from a full second-order closure, 1-D model 

indicate reasonable results when model grid resolution is adequate to 

determine the height of the unstable boundary layer. When resolution is not 

adequate for this it will be desirable to include a prognostic equation for 

the boundary layer thickness or incorporate parameterization for an elevated 

subgrid shear layer. 

Our scheme incorporates cumulus parameterization as an integral part of 

the quasi-equilibrium formulation. Our tests suggest that intermittency, a 

fundamental feature of cumulus cloud environments, may be represented in the 

model in a relatively simple fashion. These initial results indicate that 

inclusion of the effects of cumulus dynamics into • the quasi-equilibrium 

approximation of turbulent transport should be feasible. We recommend further 

testing. 
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APPENDIX A 

PARAMETERIZATION  OF SUBGRID-SCALE  FLUXES  AND  ESTIMATION 
OF  DISPERSION 

by 

W.S.   Lewellen 

Aeronautical Research Associates of Princeton, Inc. 
50 Washington Road, P.O. box 2229 

Princeton, N.J. 085^40 

ABSTRACT ' ' ,  .   " / 

The parameterization of subgrid scale turbulent fluxes of momentum, 

energy, and mass in mesoscale meteorological models is discussed. Theoretical 

analyses and available observational data are used to describe our current 

understanding of the interdependence between turbulent diffusion and the 

resolved scale distributions of wind, temperature, and species. Emphasis is 

placed on the dependence of subgrid parameterization on the simulation 

resolution in ensemble space as well as in physical space and time. Specific 

recommendations are presented for the particular problem of dispersion from 

point sources.(*) 

'Presented at the AMS workshop on Urban Boundary Layers, October,  19S3, 

Baltimore, MD ' 
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1 .  INTRODUCTION 

The turbulent fluxes of mass, momentum and energy are at least partially 

composed of motions that are too small to ever hope to be resolved in urban or 

mesoscale models. These turbulent fluxes control the interaction of the 

atmosphere with the surface and the dispersal of anything released within the 

atmosphere. Such mesoscale phenomena as the sea-breeze circulation, 

mountain-valley circulations, and the moisture build-up in the boundary layer 

necessary to drive convective clouds are all dominated by turbulent 

interactions with the surface. As long as the turbulent motions in these 

interactions cannot be resolved in the simulation, the parameterization of 

subgrid scale fluxes will play an important role in determining the accuracy 

of the simulation of any of these phenomena. This is perhaps most evident in 

the simulations of the dispersal of passive tracers in the atmosphere where 

almost all the motions responsible for dispersion are unable to be resolved in 

the meteorological model of the region of interest. 

In addition to the question of what scale of motion can be resolved by a. 

feasible grid system, there is the question of how much of the motion we wish 

to resolve. Flow in the atmospheric boundary layer inherently contains a 

turbulent stochastic component. Even if one were able to accurately 

numerically simulate all of the scales of motion in time and space for one 

particular realization, this would not provide a precise prediction of the 

motion in time and space for any other particular realization. In general, 

what we would like to simulate is the ensemble mean flow distribution in time 

and space. We would also like to gain some information about the variability 

of particular realizations from this mean. Numerical simulations either 

involve ensemble averaging of the equations "or averaging of the simulations 

realized. For nonhomogeneous, nonstationary problems the choice of scales to 

average over before the numerical simulation is an important part of the 

problem. The larger the scales over which the equations are averaged the more 

uncertainty introduced by the closure approximations, but the smaller the 

scales the larger the computational requirements and the more averaging which 

must be done after the simulation to provide proper interpretation of the 
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results. The implications of the choice of the ensemble averaging scale on 

subgrid parameterizations are discussed in the next section. 

The rest of the paper reviews some subgrid parameterization schemes and 

speculates on how they may be improved. Particular attention is given to 

dispersion from point sources because this is a problem where accurate 

parameterization of the unresolved turbulence is essential, and because this 

is an area where we have carried our speculations further. 

2.  THE INFLUENCE OF THE SCALE OF ENSEMBLE AVERAGING ON SUBGRID FLUX 

PARAMETERIZATION 

The ensemble of flows of interest are all the possible flows which 

satisfy the prescribed input data. In ideal problems this input data may be 

sufficient to relatively tightly constrain this ensemble of flows, but in 

attempts to simulate local meteorological flows which occur at a specific time 

and place the input data is unlikely to provide tight constraints. Such 

simulations must be able to deal with relatively large variances from the 

resulting ensemble mean solution. This may be accomplished either by ensemble 

averaging over the equations prior to performing the numerical simulations or 

by performing an average over a number of different simulations which fall 

within the uncertainty of the prescribed input conditions. A different subgrid 

scale flux parameterization needs to be used for these two approaches. In 

practice, the distinction between the two approaches is usually made in terms 

of the scales of motion. In so-called large eddy simulations, some ensemble. 

averaging is done at small scales, while higher-order closure approaches which 

deal with ensemble averaged equations over much larger scales may still 

resolve some of the dominant eddies in the flow. 

The standard ensemble average velocity may be defined as 

<u(x,t)> - J*u(x,t)p(a)da (A-2.1) 
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where fi is the set of all velocity fields which satisfy the prescribed input 

conditions and p(a) is the probability density function of any particular 

velocity field indicated by a. We wish to divide up this domain ensemble into 

a set of sub ensembles so that it'ia^. Each Q^ is the set of all velocity 

fields which satisfy the prescribed input conditions and are similar at scales 

of motion greater than some scale £g. A sub ensemble average 

<u(x,t)>^ - f  u(x,t)p(a)da CA-2.2) 

is then equivalent to a particular large eddy simulation of the velocity. 

In order to make this concept more explicit, consider the velocity field 

u(x,t) existing in a space domain V^ during a time interval 7^. As long as the 

Eeynolds number based on a characteristic velocity and a characteristic length 

in the domain is large, u at any x and t can assume a wide variety of values 

with the probability of any individual continuous field indicated by a 

specified by the probability density function p(a). From this variety of 

possibilities let us choose one particular continuous field. Having chosen 

this unique field we average, or filter, it over an arbitrarily chosen scale, 

I    to- eliminate all fine scale motions of a scale less than 1-. It should then e = 
be possible to chose other neighboring fields that when similarly filtered 

vary at most by an e from that chosen first. All such fields are included in 

the set. Q^i . As long as the Reynolds number based on £g and the characteristic 

velocity in Q, is large, their will also be a large number of individual 

distributions which fall within fi^ . The process can be repeated to form a ^2 

set, etc. The number of possible Q^^ sets is also large as long as ig is 

significantly less than the dominant shear layer thickness in the 

computational domain. 

The choice of i„ determines the break between resolved and unresolveu 

m;otions. Since a given grid cannot resolve a motion which is of a 

characteristic length less than about 3 times that of the grid, this sets a 

lower bound on I  .   The upper bound is the characteristic length of the domain 
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of simulation. The lower bound is appropriate for Large Eddy Simulations (LES) 

where the goal is to resolve as much of the motion as possible. The upper 

bound is appropriate when the goal is to resolve only the mean motion in the 

time and space domain. 

3-  A HIERARCHY OF SUBGRID CLOSURE ASSUMPTIONS 

The ensemble averaged equations are precisely defined for any ensemble as 

the Reynolds averaged Navier-Stokes equations 

3u^ 

3x. 
(A-3.1) 

_ 2~ 

-^ + -^(U:U,  * ^)- - -^ *  V —7^ +  6gi(e-6o) "      (A-3.2; 

3u!uV        .  3u.        3u.^ 
—i^ + -2- (Uj^utuM   = -ujuj. —^ - u^uj. —^ (A-3.3) 

-^   .. .. 3^u|u' 3ui   3u' 
(u.'uru'.) i ^   +  V  ^^^ - 2v —- —*^ 

3x^^       K  1  J P    3Xj        p    3x. 3^2 dx^   3x^ 

+   6(giUJ6'   +  gjU|e') 

The   equations   are   well-defined   but   not   closed.     Some    assumptions    relating 

higher-order  correlations must be made to close the system. 

The assumptions made to close the ensemble averaged equations control 

what parameterizations are appropriate for subgrid turbulent fluxes. It should 

perhaps be noted that when Equation 3-2 is used for LES by choosing £g smaller 

than    the   scale   of   the   large   eddies,   there is no  inclusion of Leonard stress 
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terms (Leonard, 197^) as there is when the LES equations are derived by 

spatially filtering the equations of motion. The u^ obtained from the ensemble 

average over the scale of £„ is thus somewhat different than the u^ obtained 

by spatially filtering over a scale of ie. However, this difference is 

generally masked by approximations in the Reynolds stress closure. 

The simplest closure with some general applicability is Smagorinsky's 

(1963) model which replaces Equation 3.3 with the approximation 

,1/2  o      . 1 uiul  -  -2(C3A)2   CS^S^]^^'^  Sij  * - 6ij  u^u;^ (A-3.4) 

where 

iJ      2^3Xj       3x^7 
S. .  - 1   -^ + --i I (A-3.5) 
iJ      2^3Xj       3x^7 

and the isotropic part of the Reynolds stress is absorbed within the mean 

pressure. • ' .        " 

The length scale L should be an order one fraction of Ig. If ig, and 

consequently A, are chosen as small compared to the large eddies expected in 

the field, then the resulting simulation provides a single realization of the 

large eddies in the flow. In this case the desired domain ensemble average is 

obtained by averaging the results over a suitable number of these sub-ensemble 

flows or large eddy simulations. These individual realizations may be obtained 

by varying the input conditions within the constraints of the specified 

accuracy of the input conditions. On the other hand, if ig is chosen larger 

than the large eddies expected in the field, and A is appropriately chosen, 

then the simulation will approximate that of the ensemble average flow over 

the domain without any further averaging of the simulation results. Of course, 

at the level of closure of Equation 3.^ one should expect the first LES 

procedure to provide a much more accurate simulation in return for the much 

larger computational effort required to accomplish it. 

A-6 



If A is chosen to be larger than the mesh grid but still sufficiently 

small that the eddies to be represented by (3-^) are well within the inertial 

subrange of the turbulent spectra, then the domain ensemble average over LES 

sub-ensembles should agree with the domain ensemble results for smaller A, 

although the individual sub-ensemble flows may be quite different as a 

function of x and t. If the initial input for the two simulations are 

identical then the two simulations should initially differ only in their small 

scale eddy motions but this should spread to differences in the larger eddies 

as simulation time evolves. The higher resolution results should be superior 

if the assumptions on which (3.^) are based are not completely valid. The high 

resolution results will also provide a superior simulation when the resolution 

of the input conditions is higher than the low resolution LES. If A is chosen 

sufficiently small that the eddies to be represented by (3-^) are well within 

the inertial subrange of the turbulent spectra then it is possible to derive a 

theoretical value for c„. However, researchers using this approach have found 

it more satisfactory to use a value which is significantly less than this 

theoretical value (c_ - 0.065) (Schumann, 1975). Equation (3-■4) appears to 

provide reasonable results when u{uj << u^^Uj. This imposes a stringent 

requirement on grid lengths close to a surface. In order to overcome this LES 

simulations have either made modifications to iS-^) close to .surface or 

applied boundary conditions which incorporated turbulent surface layer 

relationships. 

Close to a surface when uju^ becomes of the same order as Uj_Uj, the 

assumptions on which Equation 3-^ are based are violated, and it is desirable 

to transition to a form appropriate for ensemble averaging over a scale which 

is larger than the grid size used to resolve the mean flow close to the wall. 

The common mixing length model which is valid for the mean Reynolds stresses 

in the near-wall region is similar to Equation 3.^ but with A replaced by a 

mixing length proportional to the distance from the surface. The transition 

formula suggested by Schumann (1975) is 

^ ' - 2(V)' [2(Snm -<Snm>) (^nm -<Snm>)] ''' ^^-3.6) 

Sij -<S,j>)-2v! <Sij> * 6,j ^^/3 
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where v« comes from the mixing length formula near the wall and is not allowed 

to exceed some upper bound depending upon the grid mesh. The angular brackets 

denote a transverse spatial average which due to the symmetry of his problem 

is roughly equivalent to an ensemble average. Close to the wall, 

S. .-<S. •> <S. .> is appreciably less than one on average and the first term on 

the R.H.S. of (3.6) is much less than the last term, while far from the wall 

<S. .> -► 0 and Equation 3-6 approaches Equation S-^- 

When Equation 3-4 is viewed as an approximation to Equation 3-3 it 

becomes apparent that the non local dependence involved in the advection and 

diffusions terms has been omitted, the influence of stratification has been 

ignored and it has been assumed that the unresolved turbulence is isotropic. 

Under these conditions the dissipation term appearing in (3-3) may be 

approximated as 

7777^3/2 , . /. (A-3.7) 
^e^"k"k^   ^ij/ c (u'u')^'^ 6 

and the equation for u^u^-q^ from Equation 3-3 is consistent with Equation 

3.4. More faithful representations of Equation 3-3 should permit tg to be 

increased. with resultant computational savings, without significant 

sacrifices in accuracy. Of course, the computational savings are only 

realized, if the additional computations required for Equation 3-3 do not 

exceed the savings accrued by relaxed space, time, and ensemble resolution 

requirements. 

Second-order closure models for Equation 3-3 appropriate for variable 

density flows have been investigated by a number of researchers. Recent 

reviews have been given by Lewellen (1981), Zeman (1981). and Mellor and 

Yamada (1982). A model of Equation 3-3 which has proved satisfactory for a 

number of applications is '     ■ '      . 

St      3x^       ^ ^ 3x.   J ^ ^x^,    ^ J St      dx^ *   dxj^   -   0^^ 

•o.3-,^^H(^-. 3 y   IJ 12A 
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Compatible equations for uje', 6' and A which may be found in Lewellen (1981) 

are required to close the set at this level for the general case. Along with 

different forms of the modeled terms in Equation 3-8, a number of 

approximations intermediate to Equations 3-^ or 3-8 have been tried in the 

literature. A somewhat more general formula than {3.'4)is to carry an equation 

similar to the contraction of Equation 3-8 for the unresolved turbulent 

kinetic energy q /2 and then to model Uj_Uj as. 

^- -q£ Sij  * 6ij ^/3 :  (A-3.9) 

This turbulent-kinetic-energy-transport model for closure has been quite 

popular for simulations which have ensemble averaged over all scales of 

motion, and used by some LES models, e.g. . Schumann (1975), and 

Deardorff  (1980). 

The next level of approximation is to allow for anisotropic behavior of 

\^. This can be obtained by combining the full equation for u[uj from Equation 

3.8 with an algebraic approximation to Equation 3-8 for the relationship 

between the individual .components of u|uj. This "algebraic Reynolds stress" 

model carries more flavor of second-order closure than using Equation 3-9 

alone. We have called this a quasi-equilibrium approximation to Equation 3-3 

in our use of it to compute the diurnal variation in the planetary boundary 

layer (Lewellen, et.al., 1974). Mellor and Yamada (197^) term it their level 

2  1/2 approximation to second-order  closure. 

When the boundary layer assumption is valid, i.e., when gradients in only 

one direction are important in the production terms of Equation 3-8, the 

"algebraic Reynolds stress" can be written compactly similar to the form given 

by Yamada and Mellor   (1975)  as 

3z 
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with 

we = -qA S^ 
39 
3z 

(A-3.11) 

(?)*(' '^/3)  AgBwe /q3 
/■ 

1 + (v3).^«.f/,= 
(A-3.12) 

SR 
^/3) ww /q^ 

1 *  5.9A2gB||/q' 7= 
(A-3.13) 

where 

id 
_2 i-( ^ — 3u 

2 '^^ 3i 
2vw -— 

3z ^BgweJA / 3 q- (A-3.U) 

This formulation provides for the important influence of buoyancy on the 

eddy viscosities in Equations 3.10 and 3-11, and has been used by Yamada 

(1979, 1983) in a number of 3-D simulations of atmospheric boundary layers. 

The horizontal wind variances needed for 'dispersal estimates may be 

obtained the same way, but a better estimate is obtained by considering 

Equation 3-8 to refer only to the fully 3-D small scale turbulence. Estimates 

of the ratio of the horizontal length scale of the turbulence to the vertical 

length scale can then be used to adjust the horizontal wind variance so that: 

,.2 31 * 
3 i«i^ -m 'v\^.,,s„|l 

73 

(A-3.15) 

,2 my ^m BiS„|f 
(A-3.16: 
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It is important to note that this 1-D version of quasi-equilibrium is 

appropriate for boundary layer problems with i-Q»6 where the simulation 

corresponds to the domain ensemble average. If this closure were used for a 

LES with ig<6 then the 1-D approximation used in the algebraic reduction would 

be violated by the inherent 3-D character of the large eddies in the boundary 

layer. On the other hand, a fully 3-D algebraic Reynolds stress formulation is 

not much simpler than dealing directly with Equation 3.8. 

The only computation attempted for a fully 3-D, unsteady Reynolds stress 

model has been that of Deardorff (1972a) of flow in the planetary boundary 

layer. He used l^ of the same order as the grid mesh to perform a LES. In his 

numerical simulations which imposed a logarithmic law-of-the-wall at the 

surface rather than attempt to resolve the surface layer, the added 

sophistication of using a modeled Equation 3.3 did not provide significantly 

different results from that obtained using the simpler Equation 3.^. We would 

not conclude, as some have, from this single experiment that higher-order 

closure is not useful in any LES. The extent to which Equation 3-3 can be 

closed to faithfully represent more of the turbulent spectrum, will eventually 

determine the extent to which second order modeling can make LES more 

practical. 

We believe the marriage of LES and second-order closure (SOC) should 

provide benefits unattainable by either at the present time. The relaxation of 

the grid resolution problems at the higher frequency end of the spectrum of 

motions should allow the LES to concentrate on the eddies which dominate 

turbulent transfer in a more efficient manner. Conversely, permitting the SOC 

model to directly resolve the largest eddies should provide a generality to 

SOC which has so far eluded research modelers. The 2-D LES of Lewellen, Teske 

and Sheng (1980) for roll vortices in the planetary boundary layer and by 

Sykes and Lewellen (1982) of Kelvin-Helmholtz wave breaking in a shear layer 

have been a step in this direction. These simulations had a stronger than 

desired dependence on 2,^, since the SOC model was not general enough to 
precisely represent the effect of large 2-D eddies and any large 3-D eddies 

could not  be represented by the 2-D   simulation,   but   judicious   choices    of   £g 
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permitted very reasonable simulations of the two phenomena. 

In most regional scale models it will be necessary to set £g as of the 

order of 1 km or larger since any finer mesh than a few hundred meters in the 

horizontal appears to impose prohibitively large computational requirements. 

This means that the boundary-level eddies must be ensemble averaged over and 

the straightforward application of {3.^) is only appropriate at most for 

parameterizing the horizontal fluxes of momentum. The vertical flux of 

momentum will be controlled by the next to last term in Equation 3.6. In this 

case the most sensitive parameter in the formulation is the bounds placed on 

v^ in the outer part of the boundary layer. The most popular formulation for 

this is O'Brien's (1970) which prescribes a cubic polynomial fit to vf by 

matching value and slope to surface layer relationships, at some assumed top 

of the surface layer and fixing the value at the top of the boundary layer. 

This formulation depends explicitly on a separate dynamic prediction of the 

boundary layer height. A number of other formulations for v^ have been 

reviewed by Blackadar (1979).  -  ■ ■   . 

We believe a reasonable compromise for £.g of order 10 km is to carry a 
2 

dynamic equation for q obtained from modeling Equation 3.3- A proper model of 

this equation on this scale should recognize the disparate nature of the 

largely 2-D mesoscale eddies from the 3-D eddies equal to or smaller than the 

boundary layer scale. A 1-D algebraic Reynolds stress model may then be used 

for the vertical fluxes of momentum, energy, and mass while an approximation 

similar to Equation 3-9 is used for the horizontal fluxes. The determination 

of the vertical distribution of the length scale for the 1-D algebraic 

Reynolds stress model will require an estimate of the boundary layer 

thickness.  This requirement is compatible with the recommendation that 

integral equations for momentum,  thermal,  and turbulent kinetic energy 

boundary layer thickness be used in connection with the surface boundary 

conditions discussed in the next section. 
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k.     SURFACE BOUNDARY CONDITION CONSIDERATIONS 

Strong gradients occur in most of the meteorological variables in the 

immediate vicinity of the surface. The surface boundary conditions which are 

most appropriate for any numerical simulation then depend critically on the 

vertical grid resolution next to the surface. The straightforward use of 

no-slip conditions and no flow thru the solid boundary are generally not 

possible due to inadequate resolution next to the surface. It is possible to 

show that one should have AZ<<ZQ before no-slip conditions are appropriate at 

z-z . Since this is not feasible, one must either asymptotically match to the 

surface layer conditions at some greater height where Az<<z is feasible or 

integrate across the surface layer to obtain appropriate boundary conditions. 

A reasonable choice is to define the values of turbulent fluxes at the 

lowest point in terms of a transport coefficient, i.e. 

u'w' « -Cf.   |u|u (A-4.1) 

w'6' - -CQU, (61-63) (A-4.2) 

where specification of c^'and CQ is part of the subgrid parameterization. When 

the lower grid point falls within the surface layer these coefficients may be 

obtained by  integrating over the Monin-Obukhov functions  (Paulson,   1970). 

in Z/ZQ -'I'l 
(A-4.3) 

'9        [0.74in Z/ZQ-Y2] 
(A-4.4) 
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where 

with 

and 

[1(,   .xjl    ..n[l(,   .x=)] y^   - 2in I rfl   * xll    +  inl 7(1   + x'jl     - 2 tan'''x + x/2 

(1   -  15 z/L 1/4 

^2 - 2 -(i["('-'E)'"]) 
for 

z/L  S 0 

and 
iji    - w    - - H.7 z/L for z/L 2 0. [Note L -  - c^u ^TQ/kgCg^e^   - 63 H 

This procedure breaks down when either the turbulence within the surface 

layer is not completely controlled locally within the surface layer, or the 

bottom grid point falls outside the surface layer. Deardorff (1972a) has 

provided algorithms to circumvent both these limitations. The first is 

accomplished by replacing u« by 0.7w» when this fraction of the characteristic 

convective velocity exceeds u«. Since w« depends on the boundary layer 

thickness this provides the non-local determination of the turbulent 

interaction. The second limitation is dvercome by assuming shape functions of 

6/L for the velocity and temperature profiles over the outer 97.5$ of the 

boundary layer. This allows him to generalize the surface layer c^ and CQ 

relationships to be a function of d/zg, the ratio of the boundary layer 

thickness to the surface roughness,  and 

,, g^(Qa-Q^) 
b 2 

a bulk Richardson number. These relationships may then be applied even when z-j 
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greatly exceeds the surface layer thickness. The overall boundary-layer 

thickness is estimated from an integral of the temperature equation with upper 

bounds applied under certain neutral and stable conditions. Deardorff intended 

his PBL parameterization for global weather models but it has also been used 

for some limited area models. 

We believe Deardorff's scheme for parameterizing c^ and Cg can be 

improved by replacing Equations 4.1 and 4.2 with 

u'w' " -c* q u (A-4.5) 

v'w » -Cf> qv (A-4.6) 
•>   ■ V 

i 

w'6' - -CgqCe^-Sg) (A-n.7) 

where q is obtained from the dynamic equation for the turbulent kinetic 

energy. The coefficients defined in Equations M.5 to 4.7 may be parameterized 

in terms of 4 different boundary layer thicknesses. Two velocity displacement 

thicknesses. 6^ and 6^, the thermal thickness, 6Q, and the turbulent kinetic 

energy thickness 6^2, may be determined by integrating the momentum, 

temperature, and turbulent kinetic energy equations. We plan to investigate 

such a scheme in O'or work for the Naval .Environmental Prediction Research 

Facility. 

We expect the appearance of q in the surface coefficient definition to 

directly provide the more global dependence of the coefficients required under 

unstable conditions and hope that the use of the 4 integral constraints will 

permit more of the influence of unsteady and various horizontal pressure 

gradient effects to be included in the parameterization than is possible when 

only the thermal boundary layer thickness is used. 
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5. DISPERSION FROM POINT SOURCES - 

A subgrid scale problem of considerable importance is that of dispersion 

from a point source of a passive tracer. When the plume is small relative to a 

few grid widths of the meteorological simulation its dispersion is completely 

controlled by the subgrid turbulence. Due to the importance of turbulent 

parameterization for this phenomenon and because we have recently made what we 

believe to be significant progress in this area, we will discuss this in some 

detail. A subgrid plume from a point source may be modeled as a gaussian plume 

with the spread of the plume obtained from a dynamic equation derived by 

averaging over the dynamic equation for the turbulent species flux (Lewellen, 

1981). With the mean wind and turbulence quantities considered homogeneous 

within the subgrid volume this yields 

0(2      1 J  iJ   A Dt 

2 
where o^ is the spread of the plume perpendicular to its mean trajectory. 

Equation 5.1 provides the basis for using pertinent information about the 

wind fluctuations, the normal components of the Reynolds stress, and the 

length scale of the turbulence, to directly determine the spread of a subgrid 

plume rather than depend on empirical functions of downwind distance for 

different stability classes. It is important to note that Equation 5.1 

provides an estimate of the ensemble plume spread. For relatively large values 

of A/q, the time scale of the turbulence, a large part of this spread will be 

in ensemble space which manifests itself as a meandering plume, i.e., an 

uncertainty in position of a much narrower plume in physical space. The 

magnitude of this uncertainty in concentration may be analyzed by dealing 

directly with the concentration variance equation. When this is also assumed 

to have a guassian distribution the integrated variance equation can be 

written simply as (Lewellen and Sykes, 1983) 

-^ <c'2 + c2> = -<c'2/,^> (A-5.2) 
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2 
where i^^ is the time scale of the dissipation of c'  and •( ^  denotes 

integration over the cross section of the plume.  The Guassian distribution 

has been shown to be a reasonable approximation for homogeneous turbulence by 

Sykes, Lewellen and Parker (1983) and the predictions obtained from (5.2) have 

been demonstrated to be compatible with the data on concentration variances 

from a point source in a wind tunnel boundary layer taken by Fackrell and 

Robins (1982).  Both the data and the analyses show that a^/c, the ratio of 

the standard deviation of the concentration fluctuations to the mean value, 

can often exceed 1 even on the centerline of the plume as shown in Figure A.l 

and can be much larger in the edges of the plume. 

The calculation of the concentration variance by Equation 5.2, or similar 

equation, provides information that cannot be readily obtained from releasing 

random particles into even a completely known flow unless sufficient particles 

are tracked to provide some resolution in ensemble space as well as physical 

space. 

6. THE USE OF A VARIANCE CALCULATION AS A MEASURE OF PREDICTABILITY 

An estimate of the ensemble variance of the velocity field provides 

important complementary information to the estimate of the mean. It provides 

a measure of the predictability of the velocity and is essential to providing 

simulations of dispersion of a passive tracer in the flow. Uncertainty in the 

initial conditions of a particular simulation may be used to specify initial 

values for the velocity variance as a function of space. In a SOC simulation 

the evolution of this velocity variance field may be tracked as the mean field 

is tracked. Subsequent ratios of (o^/u), as a function of x and t provide a 

measure of how well the velocity field is specified for the particular input 

constraints. Initially a^ is determined completely by the uncertainty in the 

initial conditions. However, at subsequent times both the internal production 

terms of Equation 3-3 and uncertainties in the boundary conditions will 

contribute to o^. Even if it were possible to very closely define the initial 

conditions and boundary conditions so that o^_^=0 both initially and on the 

boundaries, the production terms in Equation 3.3 would still impose a 

variance on the field which may be expected to grow with time until some type 
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equilibrium between production and dissipation is reached. Added precision in 

specifying the Initial conditions will only reduce the variability in the 

field at times earlier than this equilibrium time. The faithful nodeling of 

Equation 3.3 should thus provide a useful means of investigating the Impact of 

various modeling improvements on predictability as a function of time. 

When I    is set at less than the characteristic scale of the domain so 
e 

that individual eddies are simulated, the effect of uncertainties in input 

conditions must be determined by sensitivity runs. The variability introduced 

by an inverse cascading of energy fran high frequency motions to low 

frequency, what Leslie and Quarini (1978) refer to as subgrid backscatter, 

will be more difficult to assess. It might be possible to assess this by 

investigating the sensitivity of the LES to random perturbations in the LES 

field which are consistent with the variance computed for the sub ig motions. 

The velocity variance determines the dispersion of a passive tracer in 

the flow. It is generally recognized that the high frequency velocity motions 

are responsible for the diffusion of a tracer as a puff of tracer material is 

transported by the low frequency velocity motions. What is not so well 

recognized is that intermediate range motions may either diffuse the puff or 

introduce an uncertainty in the transport of the puff. All of the variance 

serves to spread the puff in ensemble space but only the motions of a scale 

less than the scale of the puff serve to diffuse the instantaneous puff. The 

rest of the ensemble spread manifests itself as a meander of the plume. 

The contributions of these meanders to the diffusions of a time-averaged 

puff are determined by the relative time scale of the meanders and the 

sampling time. A mesoscale gap in the wind energy spectrum (van der Hoven, 

1957) is often evoked as justification for a distinct division between mean, 

transporting winds, and fluctuating, diffusing winds. This gap is generally 

not as pronounced as theoreticians would desire. The wind energy spectrum from 

the 100m level of a tower at the Kincaid power plant site in Illinois is given 

in Figure A.2 for 2-3 week periods in 1980 as taken from Lewellen, Sykes, and 

Parker (1983). Some interaction boundaries have been sketched on the spectrum 

to indicate what part of the spectrum may be expected to contribute to 
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different effects. 

Line A is intended to represent the bound of motions included in the mean 

transport of the plume. The motions at frequencies less than this bound must 

be adequately resolved so that the transport of a plume element may be 

tracked. There must be a consistency between the time for which the plume is 

tracked and the spatial resolution of the wind motion. In Figure A. 2 the 

transition between transport and turbulence has been arbitrarily place at 

f^-0.5 cycle/hour. This would permit a 4 m/s mean wind to transport the plume 

approximately 30 km before spatial correlation between the transporting wind 

at the tower and at the plume is lost. The shape of line A is symbolic of the 

fact that there is not a discontinuous break at this bound, but rather than 

there is a transition range of frequencies over which the ability to include 

the wind energy into the mean transport is lost. 

Line B represents the lower frequency bound of the energy which can be 

included as a part of the turbulence. B should complement A in such a way as 

to assure that there is no source or sink of wind kinetic energy in this 

transition from mean transport winds to turbulent winds. 

At the high frequency end of the spectrum, line E represents the lower 

bound of motions which contribute, directly to the diffusion of the 

instantaneous plume. Line F represents the upper bound on motions which 

contribute to the total ensemble variance of the concentration. Higher 

frequencies contribute to the dissipation of the variance rather than its 

production. The larger the spatial spread of the' instantaneous plume, the 

lower the frequency which can contribute either to the diffusion of this 

instantaneous plume or the dissipation of the concentration variance. Thus, 

lines E and F will move to the left to lower frequencies as the plume spreads 

downstream. The turbulent kinetic energy between B and E is responsible for 

the meander of the instantaneous plume. If the plume is tracked sufficiently 

far downwind of the stack then E may move to the left of B. If the additional 

spatial information is available so that the A-B boundary still correctly 

represents the transition from transport to turbulence, then when E crosses to 

the left of B it means that part of the resolvable transport motion is now 
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contributing to the  "diffusion"   of  the  instantaneous plume. 

The meander of the plume driven by the energy between boundaries B and E 

can contribute to either the time-averaged diffusion of the plume or to the 

uncertainty in the position of the time-averaged plume. The location of these 

boundaries C and D on Figure A.2 are determined by the sampling time period. 

The position of C and D sketched is arbitrarily set at a sampling frequency of 

twice per hour. Line C represents the bound on energy affecting the 

concentration level of the time-averaged sample. Motions represented by energy 

to the left of boundary C move the time-averaged plume around as a coherent 

entity rather than contributing to its diffusion. Boundary D represents the 

boundary between the motions which contribute to the time-averaged variance of 

the concentration and that which contribute to the time-averaged diffusion. 

Energy to the right of D contributes only to the time-averaged diffusion of 

the plume. We expect the contribution of energy in frequencies greater than fg 

to the tirae-averaged variance to fall off as (fg/f) approximately; this 

determines the shape of D. The shape C is harder to set but is^ determined by 

the enhanced diffusion resulting from the interaction of the small scale inner 

plume turbulence with the distortions of the plume forced by the large scale 

motion. As sampling time is reduced lines C and D approach lines E and F, 

respectively. • , 

Our purpose here is not to try to precisely define the shape of all the 

boundaries on Figure A.2, but to argue that such boundaries exist and 

qualitatively note the type of influence the energy bounded by the different 

lines has on the plume. This breakdown of the interactions of different scales 

of motion illustrates that a level of uncertainty is an inherent part of plume 

dispersion which can not be eliminated even by a perfect model. However, 

improved models should be able to provide an estimate of the variance along 

with their  predictions of the mean concentration distribution. 
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7. RELATED SUBGRID PARAMETERIZATION PROBLEMS 

1 ) Subgrid Scale Sources 

Not only is it necessary to model the subgrid transport of mass, 

momentum, and energy, but it is also often necessary to model subgrid sources 

(or sinks) of one or more of these quantities. Relatively less work has been 

de.voted to this subject than to the modeling of the turbulent transport terms 

although in urban models the influence is likely to be nearly as important. 

Subgrid surface sources generally have been incorporated into the effective 

roughness of the surface. This is appropriate as long as: (1) the height of 

the source is well below the first vertical grid point above the surface, and 

(2) the sources are relatively uniformly distributed between the horizontal 

grid points. When this is not the case a more accurate formulation should 

improve the simulation, particularly if the detailed influence of these 

sources are of interest. Pielke (1981) has proposed that subgrid scale 

terrain forcing can be neglected in mesoscale models if the subgrid scale 

terrain height variance is small compared with the grid resolvable terrain 

variance and has investigated the Spectra of terrain height variance over 

parts of Virginia (Pielke and Kennedy, 1980) and Colorado (Young and Pielke, 

1983) to see what limits on mesoscale resolution this imposes as long as 

subgrid terrain is neglected. The conclusion is that this limits the maximum 

allowable horizontal grid spacing to 100m in Colorado and 1 km in Virginia. 

Subgrid terrain forcing is probably even more important than that implied by 

the ration of the integrated subgrid terrain height' variance to , the integral 

of the resolved terrain variance due to the role of subgrid terrain changes in 

separating the boundary layer flow. However, even this conservative estimate 

indicates that such forcing can not be neglected in hydrostatic mesoscale 

simulations which have a lower bound on the horizontal grid spacing of 

approximately 5 km. This problem clearly warrants more attention than it has 

received. 
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2) Unresolved Shear Layers Away from the Surface 

Another subgrid phenomena which merits work in mesoscale models is that 

of dealing with local regions of high gradients which cannot be resolved by 

the grid mesh. It might be argued that the grid should be set so that all 

shear layers of Importance to the phenomena under investigation could be 

resolved, but this is not likely to always be feasible. Thus, subgrid flux 

parameterization may be improved if it can be formulated in such a way as to 

permit thin shear layers to exist within the subgrid space without being wiped 

out. The top of the surface mixed layer or the remnants of what was once the 

top of the mixed layer often falls into the category of a shear layer which 

needs such parameterization. A potential technique for this might be to 

compute the subgrid Richardson number in the vertical direction and limit it 

to not exceed a critical value of approximately 1A, i.e., require that 

Ri - -S- ^ ATAz 

The rationale for imposing this limit is the recognition that if Ri is 

significantly bigger than this, turbulence cannot be supported within the 

layer. Conversely, if Ri is significantly less than this value the layer is 

likely to be unstable and grow in thickness. Thus a simple, rough 

parameterization of a turbulent shear layer may be accomplished by setting 

Ri-1/4. If the computed value exceeds 1/4 then a subgrid shear layer with a 

Ri-IA may be placed within the grid. The shear layer would be joined by 

Slopes of AT./Az., Au_/Az. on the lower side and LljLz,, Aud^/Az^. on the 

upper Side. The subgrid location of the shear layer could only be determined 

if other considerations are introduced. Compatibility with the computed 

boundary layer thickness could provide such a constraint in the case of the 

shear layer at the top of the boundary layer. 

3)  Cumulus Parameterization 

Cloud dynamics play a strong part in the interaction of the surface with 

the atmosphere. Cumulus clouds present a particular problem to mesoscale 

simulations  because l^  is sufficiently large that individual  clouds  can not  be 
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resolved and the dynamical role. of clouds must be included in the subgrid 

parameterization. When the clouds are fairly uniformly distributed over the i 

domain then the principal import of the clouds is the influence of the latent 

heat release on the temperature equation and the subsequent effect of this on 

the buoyant generation of vertical motions. An added oomplication is 

introduced when the cloud instability begins to control the turbulent motion. 

This natural instability of the cloud motion tends to concentrate the vertical 

motions and causes the turbulence to be distributed very intermittently in 

time and space. The usual turbulence closure approximations assume some 

uniformity of the turbulence within the ensemble domain. Strong intermittency 

can seriously invalidate these approximations. Thus a serious attempt to 

incorporate cumulus dynamics into a general representation of subgrid 

turbulent fluxes, rather than rely on ad hoc parameterization of the influence 

of cumulus convection such as those given by Kuo (197^) and Arakawa and 

Schubert (1974), must find a reasonable closure approximation for intermittent 

turbulence. We have speculated (Lewellen, et.al., 1983) that this may crudely 

be accomplished by allowing the turbulent time scale to be proportional to an 

intermittency variable. This permits a more rapid redistribution and 

dissipation of turbulent energy. It remains to be seen how well we can 

accomplish the critical step of determining an appropriate equation for the 

intermittency variable. 

8. CONCLUDING REMARKS 

We wish to emphasize the importance of correctly interpreting variability 

within ensemble space when attempting to simulate mesoscale temporal and 

spatial distributions of meteorological variables. The appropriate choices for 

subgrid flux parameterization depend strongly on the domain in ensemble space 

a modeler wishes the simulation to represent. The subgrid flux 

parameterization is easier when the ensemble domain is tightly constrained, 

but more averaging of particular realizations is required to provide a correct 

interpretation of the simulation results. We have attempted to provide some 

guideline for flux parameterization in general and have recommended a specific 

framework which we will be testing for the Naval Environmental Prediction 

A-25 



Research Facility. We. have also made specific recommendations for the 

particular problem of dispersion from point sources. 
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APPENDIX B 

PARAMETERIZATION OF THE SURFACE LAYER UNDER CONDITIONS 
APPROACHING FREE CONVECTION 

Monin-Obukhov surface similarity contains a singularity under free 

convection conditions. We wish to explore the parameterization of the surface 

layer under conditions approaching this singularity. It is often assumed 

under these conditions that Oy - w»z and o^ - w«. Indeed, available data 

taken in the surface layer appears to support this limit reasonably well. 

However, this data is generally taken at moderately large values of z to be 

sure that (-z/L) is very large. This simple form cannot hold at sufficiently 

small z because Oj^ must be reduced to zero in some neighborhood of ZQ. Thus, 

we expect some inner region of the free convection surface layer to be 

dominated by a cascading process induced by the unsteady shear stress produced 

by the horizontal fluctuations interacting with the surface roughness 

elements. We will provide an estimate of the height of this inner layer and 

discuss the implications of this layer for the parameterization of surface 

boundary conditions. 
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ANALYSIS 

In order to provide a quantitative estimate of this inner layer 

thickness, let us approximate the time-averaged, small-scale, turbulent 

kinetic energy equation, vertically integrated over this layer as: 

'■o 

e-w' 5^ *i 
0.2 q'  In — - 0 

^0 ■ 

(B.I) 

The first term represents the shear production of high frequency energy 

resulting from the relatively low frequency horizontal velocity fluctuations 

interacting with the surface. The second term represents the buoyant 

production term due to the heat flux through this layer. The final term 

represents the dissipation of high frequency energy in this region were the 

dissipation length scale is assumed to be inversely proportional to the 

distance from the surface. The coefficient 0.2 comes from the ratio of the 

two coefficients b/a in the standard A.R.A.P.  model.' 

We have defined the inner layer as that region within which the shear 

production exceeds the buoyant production. Let us arbitrarily define 6 as 

precisely the height where the first 2 terms of Equation 1 become equal. 

Above this height, the first,term will remain essentially constant while the 

second term continues to grow linearly. From both laboratory (Willis & 

Deardorff, 1974) and field observations (Panofsky, et.al., 1977). the uf 

scaling is given by 

0.6 
T. 

e-wi h 
2/3 

(B.2) 
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thus 

with 

and 

6^ - 0.6    c^a (—j h (B.3) 

q - a /^    e-w^ 6^) . - ■  .        (B.4) 

a3 - 2 /fo.2 In — 1 (B.5) /(--i) 
Equations  (3)  and (5)  give 

3/2 /        X   \-1/2 

Under neutral surface layer conditions Cf as defined by 

-u'W 
Cf - —2 (B.7) 

qu 

would be given by 

c^ - 0.16/ln   (SI/ZQ) .. . (B.8) 

When Equation 8 is increased by 50? to allow for some instability in this 

layer, and used for c^ in Equation 6, the final result is 

*i (^" hl^o)^    - 0.17 h . (B.9) 

When h is approximately 1km and z^ is approximately 0.01m, Equation 9 

will give 6^ « 4.6m. Over water where the unstable mixed layer may be as 

small as 100m and z^ as small as 10 m, the inner surface layer thickness will 
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be as small as = O.Sm. 

When z is greater than approximately 0.1, a significant part of this 

inner layer is likely to be occupied by the canopy layer which extends out 

past lOz^ and the horizontal velocity fluctuations will play an even more 

active role in the interaction between the surface and the atmosphere. 

Deardorff .(1972) in his parameterization of the planetary boundary layer 

recognized that free convection conditions can not extend all the way to the 

surface. His reasonable fix for this condition was to not allow c^ to exceed 

2 c,, or CQ to exceed 3-33 CQ where he defined c,, and Co as: 
Ujj    9 ''N u      0 

- w' e' 
c„ = 2  (B.11) 

and c,, and CQ are the neutral values of these transport coefficients. 

The accuracy of c is not very critical in this limit where the mean wind 

is approaching zero but the heat flux cannot be allowed to go to zero also. 

Deardorff imposes a lower bound of 

V3 w'6'   free convection    - 0.0019  (e^  -  Q^] m.dg/sec (B.12) 

Our inner layer analysis presented here suggest that the lower bound on 

w'6' 
is given by 

f.c. 'r.% (^s -  ^m) (B.13) 

-'''  V.l  ' V(^'i)''^    ('-" '-' ■ ^'-^'^ 
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so that 

w'e' f.c. 
3/2 

10 

To    1" 6i/^o 

1/2 (B.15) 

Consistent with Equation 9,  we estimate that  Cf     should   be   approximately   1.5 
^ 6 

times  that  appropriate for  a neutral  surface  layer  of  thickness  5j_,   i.e., 

thus 

0.33 Ln  6,/z^) (B.16) 

w'6' f.c. 
0.6 

In 
^    «i 
^0        ' 

1/2 3/2 (B.17) 

For typical values of g/T^ =  1/30.   z^ =  1km,   and ZQ - 0.01m, 

this gives 

"'6'f.c. ■ 0.006 63 - e^ 
3/2 

(B.18) 

which is  approximately  three  times  that  given  by  Equation 12  when 

^3 ' ®ra " ''°- ^°^  2Q = 0.1m and 83 - Bjjj = 10 the ratio would be approximately- 

10.  Thus, for large temperature differences and rough surfaces Equation 12 

can underestimate the free convection heat flux by as much as an order of 

magnitude. 

Louis (1979, 1982) provides a PEL parameterization which approaches the 

free convection limit with heat flux given by 

w'6' f.c. 0.2 it H 1/2 ) 
3/2 (B.19) 

This is the same temperature dependence as given in Equation 17 and although 

Equation 19 is independent of h and a quite different dependence on ZQ, it 

leads to an expression approximately MOJ less' than Equation I8 for the same 

conditions as specified for that equation. If ZQ is decreased from 10 m to 

10 m the coefficient in Equation 18 would be reduced by approximately a 

factor of 4 while Equation 19 would lead to a factor of 10 reduction. 
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CONCLUSIONS 

The free convection surface layer conditions of Oy " z -^ will not extend 

to the surface at z^. When the Monin-Obukhov is negative and close to zero 

the convective inner layer described here will extend from z ■ 20 ZQ out to 

z - "S^.i.. where 6^^^^^ is given by Equation 9. This layer will not occur 

when -L > 6„ 4 . 
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APPENDIX C 

TlrfO-DIMENSIONAL TURBULENT SIMULATIONS 

The justification for two-dimensional studies comes from atmospheric 

observations, and this allows us to make calculations of the large eddies 

explicitly and obtain results which are less sensitive to closure assumptions. 

We have utilized two different models for these studies; one is the A.R.A.P. 

closure model as reported by Teske and Lewellen (1979), and the second is the 

mixing-length parameterization model of Mason and Sykes (1982). Both models 

were previously used to study boundary-layer turbulence profiles and employed 

artifices which reduced the reliability of the entrainment predictions. Teske 

and Lewellen prescribed numerical damping at a short distance above the 

inversion, while Mason and Sykes included an artificial cooling term to obtain 

a steady mean state at the expense of a specific relation between the heat 

flux and mean temperature profiles. In the studies reported here, we consider 
a growing boundary layer beneath a deep, stably-stratified layer so that' 

internal gravity waves are generated and transport momentum and energy in the 

vertical. An absorbing layer is placed at the upper levels to prevent 

reflection there. 

The need to consider a growing boundary layer forces a compromise on the 

length of the n'umerical integration time; we wish to integrate for a long 

time so that initial conditions are not influencing the results, but we do not 

want the boundary layer to grow so deep as to make the computational mesh 

inappropriate. These requirements led us to choose the following parameters 

for   our   runs:      geostrophic   wind   speed,   U^ »  1Oms"   ;     initial boundary layer 
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depth, z^ - 500m; initial surface heat flow, H^ = 0.1 Kms ; overlying 

stable temperature gradient, r - 6xlO~^ °Km~ . The latter is a relatively 

strong gradient, but these parameters produce a boundary layer which grows 

from 500m to about 900m in 4 hours, and has a Monin-Obukhov length, L, growing 

from 100m to about 300m, which is in the correct range to obtain longitudinal 

roll convection. We estimate that critical conditions are detectable in the 

rolls for about 1 - 1-1/2 hours, and also that average statistics need to be 

taken over a period of about 1 hour to be reliable; these experiments force, 

us to integrate for at least 3 hours. 

Initial conditions for the model runs were obtained from a 

one-dimensional, steady-state solution using the artificial cooling of Mason 

and Sykes (1982). A two-dimensional perturbation was superimposed to initiate 

the convective rolls, and the surface temperature was fixed at the initial 

value. An unfortunate result of this procedure was that the two models, 

mixing length and second-order closure, produce different steady-state 

profiles from the same external parameters, and therefore it was very 

difficult to obtain a very precise comparison between the models. The 

steady-state initialization is important because imbalances in the wind field 

produce inertial oscillations via the Coriolis term which have an 18 hour 

period, and would consequently affect the entire run. 

The initial conditions were obtained with 1Q • 40m for the mixing length 

model, and A* « 65m for the second-order closure model. Runs were made using 

these scales, and also using doubled values, i.e., 80m and 130m, to 

investigate sensitivity to closure. All runs were made using a domain 

oriented such that the longitudinal areas of the rolls lie 10° to the left 

(facing downwind) of the geostrophic flow direction. This direction was found 

to produce the maximum momentum transport by Mason and Sykes, and is 

consistent with field observations. 

Figures C.I and C. 2 show a sequence of realizations of the flow field 

from the two models. Vertical velocity component, w, and temperature contours 

are shown. The SOC model, with A* - 55m, produces rolls with less energy than 

the 40m mixing length model.  The inversion structure and internal gravity 
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2-D Roll Calculdtions 
Run Number '2102 

Time = 9000.0 Sec 

Time - iOOOO.O Sec 

2.00 

VariatlB Units Increment 

Vertical Velocity 
Temperature 

H/Sec 
•c 

0.25 
0.60 

FIGURE C.l:  FLOW FIELDS FROM THE TWO-DIMENSIONAL 
CLOSURE MODEL WITH A^= 65m.  HEAVY 
CONTOURS ARE VERTICAL VELOCITY. 
FAINT CONTOURS ARE ISOTHERMS. 
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2-D Roll Calculations - Mixing Length Model 
Run Number - OOil 

Tim = 9300.0 Sec 

Time = 3900.0 Sec 

i.OO                           2.00 
Y  ( Km ) 

3.00 

Variable             Units Increment 
Vertical Velocity 

Temperature 
H/Sec 

•c 
0.50 
O.BO 

4.00 

FIGURE C.2:  FLOW FIELDS FROM THE MIXING LENGTH 
MODEL WITH 1  = 40m. 

0 
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wave field is much better resolved in SOC, and seems to show a transient 

generation of wave trains by inversion distortions with a lifetime of about 

30 mins. These features are produced by a large amplitude roll, and move 

along the inversion with the roll. A wave train is set up, propagating energy 

upward, until the roll decays and the source of energy is reduced. The wave 

train then detaches from the boundary-layer, and moves upward with the 

appropriate group velocity.. 

The mixing length run looks different, firstly because the domain is 

viewed from the opposite side, so that the direction of horizontal propagation 

is reversed, and secondly because the rolls are more intense, producing 

smaller scale disturbances in the stable layer. In fact, the model resolution 

around the inversion appears inadequate for this run. 

Figure C.3 shows a sequence of realizations from the larger parameterized 

scale runs, i.e.. A* - 130m, and a mixing length of 80m. The mixing length 

model results are now much closer to the A* - 65m pictures, while the SOC 

results show very much weaker rolls and wave activity. 

The time and space-average heat fluxes from both SOC runs together with 

the one-dimensional solutions of the same flows are shown in .Figure C.4, and 

the mean temperature profiles in' Figure C.5. There is an encouraging 

agreement between the three SOC results, although the partition between 

resolved and parameterized fluxes changes dramatically. We should mention 

that profiles of other quantities such as turbulence energy levels or momentum 

flow would look very different for the various models, because these 

quantities contain the effects of internal gravity waves. The waves would be 

sensitive to domain orientation also, as shown by Mason and Sykes. However, 

the waves do not transport heat flux, and therefore the entrainment fluxes can 

be predicted equal by the different models. 

A similar feature can be seen in the two mixing length runs, with 

resolved flux being replaced by parameterized flux as the scale is increased 

(Figure C.6). The magnitude is also similar to the SOC results. These 

results cannot be readily compared directly with the SOC profiles;  because 
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2-D Roll Calculations 
Run Number - 3003 

Time ■= 9750.0 Sec 

3.00 

N 

i.OO 

0.0 

4.00 

a.oo 

^ s.oo 

IN 

Tiirie - iOOOO.O Sec 

i.OO 

0.0 
-2 .00 -i.OO 0.0 

( Km ) 
i.OO s.oo 

Variable Units Incraacnt 

Vertical Velocity 
Temperature 

H/Sec 
•c 

0.25 
0.60 

FIGURE C.3:  CLOSURE MODEL WITH A^ = 130m. 
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2-D 
Small Scale 
1200 r 

ZBOO - 

2-D 
Large Scale 

Model  Comparisons 

i-D QE 

Resolvsd- 

ParaiBBtarized- 

-.01     0      .01 -.01     0       .01 -.01     0      .01 

Heat Flux 
-.01     0      .01 

FIGURE C.4:  HEAT FLUX PROFILES AVERAGED FROM t = 9000s to t - 12000s FROM THE 
DIFFERENT MODELS. 
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Model Comparisons 

2-D 
Small Scale 

i200r 

iOOO 

2~D 
Large Scale 

BOO 

Z BOO 

400 

200 

. iS I I ■ I I 1 I I ' '' ■ ' k 1 M I I I I I I I I I I I t I I I I ■ ■> ■ I ''■■'■'■■''■■ L '■■■''■'■■'■■■■' 

4       5       B 4       5       6 4        5       B 

Temperature 
4        5       B 

FIGURE C.5:  AS FIGURE C.4, BUT FOR TEMPERATURE PROFILES 
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Mixing Length Model Comparisons 
2-D 

S/nall Scale 
1200 

ZBOO 

1200 r 

2-D 
Large Scale 

ResalYBd- 

Paraaeterizecj- 

.01  .02  .03  .04  .05  .06 -.01  0 

Heat Flux 

FIGURE C.6: HEAT FLUX PROFILES FROM t 
MIXING LENGTH RUNS. 

9000s TO t = 12000s FROM THE TWO 
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the surface temperature is higher, giving a larger surface heat flux.  This is 

the problem with initial conditions which was referred to earlier. 

In addition to providing independent calculations of the turbulent flow 

profiles, the two-dimensional studies also provide valuable insight into the 

dynamical mechanisms, since the large eddies are computed explicitly. We can 

see from the realizations of the flow field from the SOC model that there are 

significant vertical displacements of the inversion produced by the large 

eddies. However, the inversion does not suffer any large-scale overturning or 

breakdown, so there is no entrairjnent or detrainment due to large eddies 

engulfing stable air or exchanging mixed layer air for stable air. This seems 

to leave two mechanisms for entrainmentj small scale processes at the 

inversion mixing stable air downward, or large eddies providing the mixing but 

in some way not involving overturning. The simplest mechanism we can 

postulate is that the large eddy carries fluid up to the inversion, where it 

gains some heat from the parameterized mixing processes,  then the fluid 

parcels continue in the circulation and are brought down into the 

boundary-layer. Sample fluid particle trajectories from the 80m mixing length 

run are shown in Figure C.7; particles which originate near the surface at 

the base of an updraft and are carried up to the inversion, are invariably 

carried back down again. This tends to confirm the simple picture of 

entrainment. 

There is, however, a problem in reconciling this simple conceptual model ' 

with the observation that the entrainment fluxes can be almost entirely ■ 

carried by the large eddies, i.e., the small-scale mixing is not necessary. 

We must therefore seek an inviscid entrainment mechanism. It is appropriate 

to recall here that we are dealing with a boundary-layer which is growing due 

to a rising mixed-layer temperature via the surface heat flux. We can 

consider the simple "encroachment" concept of Carson and Smith (197^), which 

says that overlying fluid becomes part of the mixed layer as the temperature 

of the latter rises above that of fluid at the base of the inversion. This is 

effectively a "no motion" concept, and does not predict any downward heat 

flux;  stable air simply becomes part of the mixed layer.  This cannot explain 
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RUN 0013 PARTICLES 
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FIGURE C.7:  PARTICLE TRAJECTORIES FROM THE 1  = 80m MIXING LENGTH RUN FROM 

t = 8000s TO t = 12000s 
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our observations, aind so we suggest a model which takes account of the 

dynamics of the large eddies.  If we consider the motion of these eddies, then 

there is an inviscid force acting at the inversion, namely the dynamic 
2 

pressure gradient force.    The magnitude of this force will be related to w»/z^ 
where w, is the convective scaling velocity; which characterizes large eddy 

velocities. This pressure gradient will act on the overlying stable air, and 

if we consider a continuous temperature profile, then this force will be 

capable of dominating the lowest layer whose buoyancy deficit is too small to 

resist vertical accelerations. If we consider a layer whose temperature 

excess over the mixed-layer is less than AG, then this layer will be 

accelerated by the pressure gradient and can be brought into the mixed-layer 

provided 

■=-      -^^ AQ 

The downward heat flux carried by large-scale eddies pulling this layer 

down into the mixed-layer will be roughly w'A0, where w' is a scaling velocity 

for the vertical velocities near the inversion. We expect w' to be a fraction 

of w, which is roughly proportional to the ratio of the inversion thickness Ah 

to z^  so that  the entrainment flux scales  as   ■ 

w 3 « 

the surface heat flux, from the definition of w#. We therefore have a simple 

mechanism whereby large eddies can pull fluid from the base of the inversion 

by means of press'ure gradient forces, and produce plausible estimates of mass 

and heat entramment. 
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APPENDIX D 

COMMENTS ON SCALAR DIFFUSION IN THE CONYECTIVE BOUNDARY LAYER* 

by 

W. S. Lewellen, R. I. Sykes and S. F. Parker 

Wyngaard (1984) has proposed a relatively simple parameterization of 

diffusion across the convective boundary layer based on the large eddy 

simulation (LES) results obtained by him and his colleagues; Wyngaard and 

Brost (1984), Moeng and Wyngaard (1984). A central feature of this 

parameterization is the incorporation of the difference between the effective 

eddy diffusivity for scalar diffusion down from the top of the convective 

layer and that for diffusion up from the bottom. This asymmetry exhibited by 

the LES results for the scalar transport in the buoyantly produced turbulence 

driven by surface heating can not be simulated using first-order K theory. 

In this comment we wish to address two questions related to the 

asymmetric diffusion. First, what level of turbulence closure is required to 

exhibit the asymmetry between bottom-up and top-down diffusivity? Second, how 
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sensitive is Wyngaard's parameterization to the details of the asymmetric 

diffusion? Not surprisingly, we find that a level of closure which includes 

some diffusion of the second-order scalar correlations will produce the 

asymmetry. More surprising, we find that Wyngaard's parameterization is not 

sensitive to the asymmetric diffusion. In fact, it appears that precise 

symmetry could be imposed and make little practical difference in his end 

results. 

Under the horizontally homogeneous, quasi-steady conditions assumed for 

the LES, an expression for K in buoyantly produced turbulence may be written 

symbolically as: 

K =  - w'c'   /   OC/az) W'W' C'Q'      -    — 
3_ 

'SC/3Z (D.l) 

Where the time scale -c-i   is defined equal tc 

c'w' £i 111 
p     3z 

Under    the    same    conditions    the    potential    temperature-species    correlation 

appearing in Equation D.l   may be written as: 

c'e' w'0' 
3C       ^   30   3C 3    -r-nrr — +K + —    w'c'0' 
3z 3z  3z       3z 

(D.2) 

with T2  equal  to the ratio of c'0'   to the rate of   dissipation   of    c'0'.     When 

Equations D.l   and D.2 are combined 

Tl    [wW      .,2^1 
-——    3w'c'0'    /  -vp,^, w'0'-   /    3C/3z 

3z       / 

az     / 
1     +    Ti     T-,               

1     2     T^     32 
(D.3) 
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Equation D.3 is an exact expression for K for the quasi-steady, 

horizontally homogeneous, buoyant convective layer as long as the t's remain 

exact. If the t's are taken as properties of the turbulence, independent of 

the C distribution and the 3rd order diffusion terms are ignored then it is 

clear that K will also be a property of the turbulence only. 

Figures 8 and 10 of Moeng and Wyngaard (1984) for the T'S as given by 

their LES results suggest that for this problem the t's may be taken as 

properties of the turbulence.  Thus, the asymmetry appears to be imposed by 

the turbulent transport of either c'0' or w'c'. 

The answer to our first question is that a level of closure that 

incorporates turbulent diffusion of the second-order species correlations is 

required to produce a proper asymmetry in the top-down-bottom-up diffusion. 

Figure D.I compares Wyngaard and Brest's bottom-up and top-down 

diffusivities with values we obtain from the second-order closure model of 

Lewellen (1977) which uses a simple gradient diffusion model for the turbulent 

transport of both c'0' and w'c'. The most obvious difference between .the LES 

results and the second-order closure results is the singularity which appears 

in K^ near z = .55z^ in the SOC results, but doesn't appear in the LES 

results. However, this is apparently more a result of uncertainties in the 

LES result than it is a true difference between the LES and the SOC results. 

Moeng and Wyngaard (1984), in a recalculation of the LES, present results for 

the normalized gradient g^ which go thru zero a little above z » 0.6z^. Thus, 

their more recent results would give a singularity in K.^ near the same value 

of z as given by the SOC results. Since the turbulent transport terms are 

divided by the concentration gradient in Equation 3, relatively small errors 

in the turbulent transport can lead to large errors in K in the middle of the 

convective layer where the gradient is very small. We conclude that the 

asymmetry between K^^ and K^ exhibited by the SOC model is qualitatively 

similar to that of the LES. Presumably we could use terms of the type 

proposed by Zeman and Lumley (1976) to adjust the modeled turbulent transport 

terms and make our profiles of K^ and K-^ come closer to the LES. As more 

detailed LES results become available this may be desirable. 
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The next question we address is how important is this K asymmetry in 

Wyngaard's proposed parameterization. We approach this question by repeating 
Wyngaard's analysis with the top-down dimensionless gradient, g^, multiplied 

by a factor K^ . The parameterizations provided in Equations 21 and 23 are 

then modified by replacing cw-] and Wg with cw-i/K-] and Wg/Ki respectively. The 

only other  change  is Equation 29  for A^..     It becomes 

^t  ■    2.0/K^ a Wg/w«K^ 
-l/: 

-1 (D.4) 

These changes force two types of changes in the resulting unmixed layer 

profile. First, h^ is moved a little further from z^ as K^ is decreased, and 

second the gradient of C in the interfacial region is increased (or decreased) 

as K-] is increased (or decreased). To make this sensitivity more specific, 

consider Wyngaard's boundary conditions for humidity-like scalars. Then his 

Equations 26 to 31   yield '     - 

CWi C3      C2 -    C 1   + 
■^b^s 

1   + 
"e\ 

(D.5) 

If the top-down and bottom-up diffusivities were made symmetric by making 

K^ ="0.4 then cw^ would be decreased by » 20$ for typical PBL conditions by 

virtue of WgA^./w» increasing from - 0.2 to - 0.4. However, since Wg cannot in 

general be estimated to within an accuracy of 20% this change is of little 

practical significance until better parameterizations of the entrainment 

across the inversion are available. 

Wyngaard's section 4 is devoted to arguing that his closure is valid for 

a wide variety of typical conditions. We believe that this is true, but not 

because the LES results for g^ are valid for a'll these conditions. It is true 

because the critical features which allow the parameterization to work are 

that K go smoothly to a reasonable representation of the surface layer 

dynamics in the lower part of the layer and that K go smoothly to a small 
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value within the capping layer. We believe the LES results for g^ in the 

upper part of the boundary layer are likely to be sensitive to such things as 

strength of the inversion and non-linearity in the flux profile, but this 

sensitivity is of little consequence until a much better parameterization of 

the inversion layer is available. 

In Summary, the asymmetry in scalar diffusion within the quasi-steady, 

homogeneous, convective layer is an interesting feature which can be used to 

test diffusion models. Second-order closure has a definite advantage over 

lower level closure in simulating this feature. However, further improvements 

in the parameterization of entrainment across the inversion are necessary 

before accurate simulation of this interesting feature is very significant in 

practical mixed-layer parameterizations such as that proposed by Wyngaard. 
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